
Diploma Thesis
in Informatics

Creating Highly Accurate 3D
Representations of Large-Scale
Outdoor Areas Using SLAM

Algorithms

at the Department of
Technical Aspects of Multimodal Systems,

University of Hamburg

submitted by
Jan Christoph Gries

Jan Girlich
June 3, 2011

supervised by
Prof. Dr. Jianwei Zhang

Dr. Kay Fürstenberg

Abstract

Heavy transports are very important undertakings that due to their cost and risk
factors require careful planning. The project 3D-Heavy Transport Route Finder
(3D-HTRF) was developed by Gustav Seeland GmbH and SICK AG, which resulted
in a car equipped with laser range finders and highly accurate, but expensive inertial
navigation systems to build maps of possible transportation routes for quicker
and cheaper scouting of routes. This work takes a look at the accuracy of the
generated maps, as well as suggest and evaluates a method to further improve the
maps. FastSLAM is a method from the field of robotics and originally developed for
localization and mapping. We adopted the FastSLAM algorithm for 3D application
and for using it to improve the match of laser scan data in a post processing step.
The evaluation shows that, while the basic concept works, FastSLAM cannot help
improving the maps of the 3D-HTRF project using the existing hardware setup. The
reasons why are discussed and suggestions on how to overcome the problems faced
are made.

iii

Contents

Abstract iii

1 Motivation 1
1.1 3D Heavy Transport Route Finder (3D-HTRF) 2
1.2 Challenges of 3D-HTRF . 2
1.3 Experimental comparison of position data sources 4

1.3.1 Problem formulation . 4
1.3.2 Experimental setup . 4
1.3.3 Conduct of the experiment . 5
1.3.4 Experimental results . 5
1.3.5 Discussion . 8

1.4 Expanding 3D-HTRF to the field of robotics 9
1.5 Mapping . 9
1.6 Simultaneous Localization and Mapping to improve map accuracy . . 10

1.6.1 Iterative Closest Point (ICP) 11
1.6.2 Extended Kalman Filter (EKF) 13
1.6.3 FastSLAM . 13

1.7 Contribution of this thesis . 14
1.7.1 Reducing financial costs of the current system 14
1.7.2 Creating maps of higher accuracy using the 3D-HTRF hardware 14
1.7.3 Code quality vs. runtime . 15

1.8 Summary & Overview . 15

2 Hardware 17
2.1 Car . 17
2.2 Laser Range Finder . 17
2.3 Position data sources . 20

2.3.1 Car sensors . 21
2.3.2 Xsens MTi-G . 22
2.3.3 Oxford Technical Solutions RT3040 23

2.4 System costs . 23
2.5 Summary . 24

3 State of the Art 25
3.1 The problem of Simultaneous Localization And Mapping 25
3.2 History of SLAM . 26

v

Contents

3.3 Common sensors used with SLAM . 27
3.3.1 LIght Detection And Ranging (LIDAR) 28
3.3.2 Camera . 28
3.3.3 Radar . 29
3.3.4 Sonar . 29

3.4 Iterative Closest Point . 29
3.5 Analytical approaches . 30

3.5.1 (Discrete) Kalman Filter . 30
3.5.2 Extended Kalman Filter . 32
3.5.3 Further Kalman Filter . 33

3.6 Numerical Approaches . 34
3.7 FastSLAM . 35
3.8 Related work . 35
3.9 Other SLAM related research topics 36

3.9.1 Loop-Closing . 36
3.9.2 Relaxation . 37
3.9.3 Kidnapped Robot Problem . 37
3.9.4 Global and local localization 37

3.10 Summary . 38

4 Theoretical background 39
4.1 Laser Range Finder (LRF) . 39

4.1.1 Infrared light . 39
4.1.2 Time of flight . 41
4.1.3 Frequency phase-shift . 41
4.1.4 Echo pulse width . 43

4.2 Inertial Navigation System (INS) . 43
4.2.1 Inertial Measurement Unit (IMU) 43
4.2.2 Global Positioning System (GPS) 43

4.3 Quality of a map . 44
4.4 Calculation complexity . 45
4.5 Relaxation . 47
4.6 Landmarks . 48
4.7 FastSLAM . 50

4.7.1 Particle . 51
4.7.2 Predicted particle pose . 52
4.7.3 Observation . 52
4.7.4 Landmark associations . 53
4.7.5 Likelihood . 54
4.7.6 Extended Kalman filter . 55
4.7.7 Particle Filter . 57

4.8 Summary . 59

vi

Contents

5 Implementation 61
5.1 Coordinate Systems . 61

5.1.1 World Geodetic System 1984 (WGS84) 61
5.2 Program layout . 63

5.2.1 AppBase configuration . 64
5.2.2 AppBase data types . 64
5.2.3 Object File Format (OFF) . 65
5.2.4 OFF file viewer . 65

5.3 Preprocessing . 66
5.3.1 Street border cutter . 67
5.3.2 Street surface marking detector 67
5.3.3 Echo pulse width cutter . 68
5.3.4 Clustering . 69
5.3.5 Slicing . 69

5.4 FastSLAM . 72
5.4.1 Particle . 72
5.4.2 Predicted particle pose . 73
5.4.3 Likelihood table . 74
5.4.4 Associate Observations with Landmarks 76
5.4.5 Kalman Filter for landmark update 77
5.4.6 Pseudo random number generator 80

5.5 Relaxation . 82
5.6 Summary . 84

6 Discussion 85
6.1 Design decisions . 85

6.1.1 FastSLAM 1.0 vs. FastSLAM 2.0 85
6.1.2 Slicing . 86
6.1.3 Edge and corner detection . 86
6.1.4 Landmark detection . 87
6.1.5 Likelihoods . 88
6.1.6 Resampling . 88
6.1.7 Modeling of errors and probabilities 89
6.1.8 Coordinate Systems . 89
6.1.9 Data structures . 89
6.1.10 Data output . 90

6.2 Results . 90
6.2.1 Comparison of ICP to FastSLAM 92
6.2.2 Replacing an INS . 92
6.2.3 Using the Xsens MTi-G instead of the Oxford Technical Solu-

tions RT3040 . 92
6.2.4 Improving maps built from Oxford Technical Solutions RT3040

data . 96

vii

Contents

6.2.5 Conclusion . 96
6.3 Statistics . 98

6.3.1 Runtime . 98
6.3.2 Memory usage . 99
6.3.3 Updated Landmarks to Observations ratio 100

6.4 Relaxation . 102
6.5 Summary . 104

7 Outlook & Conclusion 107
7.1 Hardware Suggestions . 107

7.1.1 LRF mounting positions . 107
7.1.2 Accuracy of timing . 108
7.1.3 Accurate determination of model errors 109

7.2 Improving FastSLAM . 109
7.2.1 Landmark detection . 109
7.2.2 Reducing calculation complexity and memory usage 111
7.2.3 Probabilistic extensions . 112
7.2.4 Output . 113
7.2.5 Relaxation . 113

7.3 Conclusion . 114

Acknowledgment 117

Eidesstattliche Erklärung Jan Girlich 119

Eidesstattliche Erklärung Jan Gries 121

Aufteilung der Gruppenarbeit 123

Bibliography 131

A FastSLAM 1.0 pseudo code 133

B AppBase configuration 135

C Preprocessing workers 137
C.1 Street border cutter . 137
C.2 Street surface marking detection . 144
C.3 Echo pulse width cutter . 148
C.4 Coordinate conversion . 150
C.5 Slicing . 151

D FastSLAM 159
D.1 SLAMWorker . 159

viii

Contents

D.2 Landmark . 170
D.3 Extended Kalman Filter . 171
D.4 Particle . 175
D.5 Likelihood table . 182

E Relaxation 193

F OFF viewer 197
F.1 ibeo3DVisioFileReader.cpp . 197
F.2 ScanPointArray.cpp . 200

ix

List of Figures

1.1 A street lamp shows up twice due to the localization error between
two composed scan drives. The red line is the trajectory driven by
the car . 3

1.2 Arrangement of the traffic cones serving as a reference in the scan data. 5

1.3 The point cloud of the car sensors does not include any height in-
formation and the accuracy of the resulting map is very good. The
traffic cones of the ten point clouds are placed very close together by
the SLAM algorithm forming these quite small clouds of cones. 6

1.4 The Xsens MTi-G produced the worst results and an aerial view shows
that no walls or trees are matched. Everything shows up five or more
times in quite a bit of a distance which is enough to conclude that the
matching did not work well on the data of this source. 6

1.4 Although the Oxford Technical Solutions RT3040 is as expected much
better than the results from the Xsens MTi-G, it does not reach
the accuracy of the CAN data and lacks consistency in the height
information. On this picture one can clearly distinguish the different
scans at different heights around ground level. 7

1.5 One can clearly see about 10 cm long horizontal offsets at the vertical
line marking the beginning of the field of vision of the sideways pointing
LRFs. Those ‘jumps’ are probably caused by a correction step by the
Xsens MTi-G when a new GPS position has been determined. 8

1.6 The SLAM-6D algorithm based on ICP was applied to scan data
preprocessed in the same fashion as the scan data for the FastSLAM
algorithm. This figure shows the result. As can be seen the straight
street did not get reassembled at all by the ICP SLAM, but each slice
is going in different directions and trees are pointing up and down. . . 12

2.1 Picture from ibeolaserviewer with a tree on the left. The two scanners
on the side are green and yellow and the one on the back of the car
is blue. In the middle you can see some measured points originated
from the vehicle itself. 18

2.2 The Volkswagen Passat used by Gustav Seeland GmbH with three
SICK LMS151 laser range finders on the roof. One LRF to scan each
side of the car and a third on the stern of the car. 18

xi

List of Figures

2.3 The three scanner are attached to roof rack of the car. The two
scanner on the side are installed vertical. The one in the middle is
tilted and can look behind the car. 19

2.4 The Laser Measurement System 151 (LMS151) from SICK. 19

2.5 The CAN-bus connects all parts of the car and through it one can
read out the sensors and control the car functions. 21

2.6 These two INSs were used in this thesis. The Xsens MTi-G (a) is a
small, cheap and less accurate INS compared to the Oxford Technical
Solutions RT3040 (b). 22

3.1 Interest in SLAM research . 26

3.2 This diagram of the Kalman filter updates from time k-1 to
k+1 shows how all the different factors influence the new es-
timate. (Taken from http://www.marsa4.com/jmla/index.php?

option=com_content&view=article&id=52&Itemid=57 on June 1st,
2011) . 31

4.1 This schematic shows an Ibeo Alasca LRF and its inner workings.
Ibeo was a subsidiary of SICK AG, the manufacturer of the LRFs
used in this thesis. Ibeos Alasca model uses a very typical working
principle shared by many LRFs. 40

4.2 The phase-shift technique modifies the laser beams light intensity
in a long, sinusoidal curve and measures the incoming laser beams
intensity. From the difference the length of the phase-shift can be
calculated and the distance to the object derived. 42

4.3 A GPS receiver on the earth’s surface receives the signal from three
GPS satellites and based on the send time the distances r1 ,r2 and r3
can be calculated. In turn this information are sufficient to calculate
GPS receivers position. 44

4.4 Relaxation computed out of the states sk+1, sk−1 and the odometry
data uk, uk−1 a new position for sk by building the center between
the estimated position . 47

4.5 A robocup field with some artificial landmarks at the border of the
field. Each landmark has its own color code for its identification . . . 49

4.6 A SICK laser scanner and a reflector-mark installed on a table leg for
an easily recognition . 50

4.7 An extension of the FastSLAM motion model from 2D to 3D. Addi-
tionally to the αyaw1, αtrans and αyaw2 parameters, αpitch1, αpitch2 and
αroll are added. 53

4.8 An ambiguous data association which could be solved in favor of
landmark 2 by the calculation of the likelihood. The landmarks are
diagrammed by a ellipsoid represents its probability distribution. . . . 54

xii

http://www.marsa4.com/jmla/index.php?option=com_content&view=article&id=52&Itemid=57
http://www.marsa4.com/jmla/index.php?option=com_content&view=article&id=52&Itemid=57

List of Figures

5.1 This flowchart shows the layout of the implemented AppBase workers
and the data paths between them. For output purposes the data is
routed along the grey paths, but this does not have any impact on the
FastSLAM algorithm. The OFF output is implemented within the
FastSLAM worker, but shown here for completeness. VSB stands for
VehicleStateBasic which is an object of the AppBase API holding the
dead-reckoning data from the car’s CAN-bus, while WGS84 objects
hold the position data from the INSs in longitude and latitude format. 64

5.2 On the right hand side the original data with the echo pulse width
representation as gray scale can be seen and on the left hand side
the result of the street surface marking detector followed by the echo
pulse width cutter is shown. 69

5.3 The outlines of the street surface markings have been extracted and
assigned to clusters. Landmarks belonging to the same cluster have
the same color. 70

5.4 This figure shows three differently colored slices. Each slice is a
combination of 20 scans of all three scanners and the slices have an
overlap of eight scans. The overlap of the yellow and green slices are
masked by the next slice but one can see that blue slice consist of 20
and masked slices of 20− 8 = 12 scans 71

5.5 Flow chart of FastSLAM . 73

5.6 The red line shows the vehicle trajectory as plotted by the dead-
reckoning data from the car’s CAN-bus. The dot cloud at its end is
the particle cloud created by repeated pose sampling of 100 particles
along the trajectory. 75

5.7 This figure shows a view of all Particles saved Landmarks extracted
from a Merkurring scan. The best rated Particle’s Landmarks are
colored red and the other Particle’s Landmarks were arbitrarily colored
with varying green and blue levels. 81

6.1 A photo of the Merkurring looking at the central pole from a position
a few meters away from the lamp post used for evaluating the map
accuracy. 91

6.2 On the upper image one can see a map built from CAN data only.
It is taken from the 3D-HTRF project without any processing. The
scans do not match up and the lamp post is clearly twice in the
map. The bottom image shows the same lamp post after applying
the implemented FastSLAM algorithm to the map. The lamp post is
still visible twice. This shows that FastSLAM is not able to replace
an INS in the context of the 3D-HTRF project. 93

xiii

List of Figures

6.3 Maps built with the Xsens MTi-G are not much better than the maps
built from CAN data, shown in the previous section. The lamp post
still shows up twice in the unprocessed upper image. In the lower
image the two lamp posts are still far away from each other. There is
no significant improvement. 95

6.3 Another problem of the Xsens MTi-G is the height information as can
be seen on the upper picture where the right hand side trajectory is
positioned below the left hand one although the car was on the same
street level when recording both trajectories. The lower image shows
an improvement in the height of the right hand side trajectory, but
the floor plane is still tilted and does not match up perfectly. 96

6.3 Again the upper image shows the map taken from the 3D-HTRF
project, this time made using the data from the RT3040 INS. The
lamp post is already matched quite well. After applying the FastSLAM
algorithm the resulting map is less accurate, as can be seen in the
lower image. 97

6.4 The runtime of the basic implementation of the FastSLAM algorithm
rises linear with the number of Particles M 99

6.5 The runtime of the basic implementation of the FastSLAM algorithm
also rises linear with the number of matched Landmarks N 100

6.6 This graph shows the memory usage of the implemented FastSLAM
over time. The memory usage reflects the number of Landmarks saved
because that is the main data structure stored by the Particles, so
this graph gives a good impression on how many Landmarks are in
use by the FastSLAM algorithm. 100

6.7 The ratio of associated Landmarks nt and Observations zt, normal-
ized by the number of Particles M , plotted for multiple likelihood
thresholds for new Landmarks. The curves being so close shows that
the Landmarks are good associated with the Observations. 101

6.8 Maps when exiting the Elbtunnel before and after relaxation. A quite
more smooth course of the road can be seen. 103

6.9 Data after using the relaxation algorithm as they are shown in figure 1.5104

xiv

Motivation

1
Heavy transports are vehicles moving objects of unusual large dimensions or weight
that cannot be divided, exceeding the lawful limits for public vehicles in traffic.
Heavy transports are very important for many areas of modern industry and often
cannot be avoided, for example to move windmill propellers, industrial machinery,
transformers, turbines, airplane wings and sometimes even small houses.

Those transports can be carried out with ships by water, via air with freight planes
or by land on streets. Usually the most complicated transports are the ones on land
because of man-made structures like houses, bridges, tunnels and lamp posts. Air
and water do not have as many obstacles to circumvent as land transports.

Streets are not built for heavy transports to fit and need to be surveyed to evaluate
if a transport will fit around street corners, under bridges and maybe which traffic
signs have to be temporarily removed. Often the shortest way is the hardest way to
go and detours are easier, but the best option should be found beforehand. For a
heavy transport special permits and fees are needed and they are only allowed at
certain days and times to minimize the impact on traffic. Main traffic arteries might
be partly or fully closed for longer periods of time, since heavy transports usually
drive very slowly for safety reasons. Because of the high costs and the critical time
conditions special care has to be taken when planning a heavy transport. Mistakes
are very expensive and high planning costs to avoid mistakes from happening are
justified.

To find the best route and ensure a safe passage of a heavy transport scouts are sent
out to examine all critical areas of the intended route and measure heights of bridges,
width of roads, check for obstructions on street corners and so forth. Even during
non peak hours, this measuring can take up to seven or ten days1.

This is why the heavy transport company Gustav Seeland GmbH, Technical University
Hamburg-Harburg (TUHH) and SICK AG started a joint venture called 3D-HTRF2

to develop an enhanced way of scouting heavy transport routes on streets.

1http://www.welt.de/print/die_welt/hamburg/article12983598/

Gesucht-Die-optimale-Route-fuer-Riesenlaster.html (April 07, 2011)
2http://www.seeland-messtechnik.com/index.html (April 07, 2011)

1

http://www.welt.de/print/die_welt/hamburg/article12983598/Gesucht-Die-optimale-Route-fuer-Riesenlaster.html
http://www.welt.de/print/die_welt/hamburg/article12983598/Gesucht-Die-optimale-Route-fuer-Riesenlaster.html
http://www.seeland-messtechnik.com/index.html

1 Motivation

1.1 3D Heavy Transport Route Finder (3D-HTRF)

To ease the scouting process, a car is equipped with Laser Range Finders (LRF)
which scans its surroundings while driving along the intended route. To find out
where the car is at any given moment an Inertial Navigation System (INS) is installed
in the car. An INS is a system with gyroscopes, acceleration sensors and GPS to
precisely determine the position, speed and orientation of the vehicle it is installed
in (for further information on INS see sect. 4.2). The LRF measurements and the
position information from the INS are then combined to create maps which can be
evaluated on a computer.

The project is complete and the car is in use by Gustav Seeland GmbH. In its current
setup the car drives up to about 80 km/h and takes approximately 40,000 laser range
measurements per second. Compared to systems working with SLAM algorithms
this is very fast. For example the Pioneer used in [LNHS05] drives less than 20 km/h
to get a higher scan point resolution but one requirement of 3D-HTRF was to travel
without obstructing the normal traffic. So the typical speed of trucks was chosen.

1.2 Challenges of 3D-HTRF

For planning heavy transport routes the accuracy and the detail of the maps used
have to be exceptionally high. Small objects like thin poles, hanging power cables
and attachments to tunnel walls might all stop an oversize transport. On the other
hand detours are expensive and therefore heavy transport companies work with safety
distances as low as 4 cm between the vehicle and any object. This is problematic
since the laser range finders already have a statistical error of σ = 2 cm (see tbl. 2.1).
Assuming that the errors causing too long readings are irrelevant and the 4 cm
tolerance equals two standard deviations of the laser scanner, 2 · σ = 4 cm, the error

margin is met in 1
σ
√
2π

∫ µ+2·σ
−∞ exp

(
−1

2

(
x−µ
σ

)2)
dx ≈ 97.7% of all measurements.

To increase the detail of a map and get more data which can be used to lower the
reading error the car could go slower to take more measurements on the same area
as with higher speeds. This will not help to increase the point density of a map
in all cases, because some detail might be missing because of occlusion. Occlusion
can be caused by vehicles, pedestrians or other moving objects. Most of the objects
are occlude some certain areas only temporarily and so another possibility could
be taken. Driving past area of interest multiple times in different directions and
combining the scans increase the level of detail in a map and deal with the occlusions.

In the current system those methods do not increase the accuracy or detail of the
maps. In fact combining multiple scans decreases the accuracy of the maps because
the alignment has a high error rate. Localizing a vehicle is a difficult task and
even high end solutions like the INSs used in the 3D-HTRF project have an error

2

1.2 Challenges of 3D-HTRF

Figure 1.1: A street lamp shows up twice due to the localization error between two
composed scan drives. The red line is the trajectory driven by the car

significantly higher than the accuracy needed for matching multiple scans within
the desired range of accuracy (compare sect. 1.1 and table 2.3). When combining
the maps of several scan drives this error leads to multiple images of objects (see
fig. 1.1).

Further problems are tunnels or other constructions which block the GPS signal
for a significant timespan. The INSs try to compensate the lost GPS signal by
extrapolating the vehicle position by dead-reckoning with the acceleration and
gyroscope data. The longer the signal is lost and the more curves are involved the
worse these position estimates get. When the INS receives a new GPS position after
a while the position gets corrected quickly and a “jump” from the last estimated
position to the new GPS position occurs. This problem can be tackled with a
technique called relaxation which was implemented and tested as well (see sect. 5.5).

Small changes in the vehicle orientation, e.g. like they occur when driving through a
pot hole, might go undetected because of the short time duration within which they
happen. But single laser scans taken during this short time frame might be affected.
For the scope of this thesis such errors are ignored since they will only affect few
scan points and can be regarded as measurement errors.

When a vehicle drives back to a position where it has been before, it created a loop.
When working only with dead-reckoning closing such loops is a challenging task, but
the 3D-HTRF project handles large loops very well because of the global positioning
through the GPS.

3

1 Motivation

For the purposes of the heavy transport company the global position is not of high
priority, because the hard problems to solve are in small ranges of less than 50 m only.
As long as the heavy transport company has a map which is about 4 cm accurate
within any given 50 m radius, they are able to plan their heavy transport routes.
Where exactly on the globe the problematic area is does not matter as much.

1.3 Experimental comparison of position data sources

Since localization accuracy is a very important aspect of the 3D-HTRF project, an
experiment was set-up and performed to compare the quality of the three different
position sources available. This experiment was also intended to get acquainted with
the software framework and test vehicle including its sensors used in the following
parts of this work.

Since no suitable 3D FastSLAM-package could be found for a comparison the well
established SLAM software package SLAM-6D3 was used. SLAM-6D is based on the
Iterative Closest Point approach (see sect. 3.4) and later also used for a comparison
to the FastSLAM algorithm implemented (see sect. 6.2.1).

1.3.1 Problem formulation

The experiment was conducted to answer these questions:

� How good are the maps created by the 3D-HTRF system?

� Which of the position sources of the 3D-HTRF test vehicle is the most accurate
one?

1.3.2 Experimental setup

Six traffic cones (fig. 1.2(a)) are laid out on each end of an 100 m test track on a
straight road in a low-traffic industrial area. The traffic cones serve as a reference to
judge the quality of the matching process with the scan data. A straight track was
chosen because it is easier for the driver of the car to follow precisely at a steady
speed and thus to reproduce multiple times.

To determine the odometry three sources are possible. First the built-in sensors of
the car, normally used for ESP (see sect. 2.3.1). The other two possibles are the
informations delivered by the INSs Xsens MTi-G (see sect. 2.3.2) and RT3040 (see
sect. 2.3.3).

3http://www.openslam.org/slam6d.html (May 3, 2011)

4

http://www.openslam.org/slam6d.html

1.3 Experimental comparison of position data sources

Figure 1.2: Arrangement of the traffic cones serving as a reference in the scan data.

1.3.3 Conduct of the experiment

The car drove the track up and down and scanned its surroundings a total of ten
times. Each run’s measurements are combined to one point cloud for each run and
are treated as separate scan drives.

The first six cones are used to match the starting position of each run. To do this the
first part of the map with the six cones is cut out and the program SLAM6D4 is used
to calculate the transformation matrix matching the ten runs one on another. The
algorithm for this matching process is Iterative Closest Point (ICP) (see sect. 3.4).

This matrix is then used to transform the point cloud of the whole track. The six
cones at the other end of the test track are used to assess and compare the accuracy
of the odometry data and the data from the INSs.

1.3.4 Experimental results

The results of the experiment are a little surprise. As can be seen in figure 1.3 the
car sensors generate a quite good result. The cones are in an area with a diameter of
about 40 cm which is a maximum deviation of 4 �.

The data of the RT3040 produces a good result when ignoring the the height
information. The diameter is with about 50 cm a little bit larger than the outcome
of the car sensors data. When considering the height information there is an error of
about ±30 cm as can be seen in figure 1.4.

The results of the Xsens MTi-G are shown in figure 2.3.2. The deviation is in a
range of several meters and thus the worst result for all position sources.

4http://www.openslam.org/slam6d.html (May 3, 2011)

5

http://www.openslam.org/slam6d.html

1 Motivation

Figure 1.3: The point cloud of the car sensors does not include any height information
and the accuracy of the resulting map is very good. The traffic cones of the ten point
clouds are placed very close together by the SLAM algorithm forming these quite small
clouds of cones.

Figure 1.4: The Xsens MTi-G produced the worst results and an aerial view shows that
no walls or trees are matched. Everything shows up five or more times in quite a bit of a
distance which is enough to conclude that the matching did not work well on the data of
this source.

6

1.3 Experimental comparison of position data sources

Figure 1.4: Although the Oxford Technical Solutions RT3040 is as expected much better
than the results from the Xsens MTi-G, it does not reach the accuracy of the CAN data
and lacks consistency in the height information. On this picture one can clearly distinguish
the different scans at different heights around ground level.

7

1 Motivation

Figure 1.5: One can clearly see about 10 cm long horizontal offsets at the vertical line
marking the beginning of the field of vision of the sideways pointing LRFs. Those ‘jumps’
are probably caused by a correction step by the Xsens MTi-G when a new GPS position
has been determined.

1.3.5 Discussion

As shown the best result are the ones using the dead-reckoning data from the car
sensors. That the provided height information is matched so well is not surprising
since the car has no information about its height. What is surprising is that even
without noticing the height the car sensors meet the goal best.

Possible reasons are that the setup the typical error precludes. When the vehicle
travels at a constant speed straight ahead the tires never loose contact to the road.
Perhaps it would appear different if the test contains curves or acceleration and
deceleration would be involved. Anyway the cheapest localization system produces
the best results. This possibly can be used to get a cheaper version of the HTRF-
system when we deal with the combination of multiple scans with the help of a
SLAM algorithm.

The bad results of the Xsens MTi-G can be explained when looking at figure 1.5.
The update of the provided pose is very abrupt when a GPS position is received.
This makes a precise matching of the scans measured between the start cones very
difficult. A mistake made here will be amplified during the course of the test track.
To make up for that an algorithm was built in our work called relaxation.

When matching the first scans of the test track ICP is used. The results are good

8

1.4 Expanding 3D-HTRF to the field of robotics

but this was one of the easiest tasks for a SLAM algorithm. All point clouds have
the same borders given by the traffic cones. The measurements are always of the
same objects and nearly every point has a corresponding point in the other scan.

1.4 Expanding 3D-HTRF to the field of robotics

As a manufacturer of Laser Range Finders often used in the field of robotics, SICK
AG is in a cooperation with the Department of Technical Aspects of Multimodal
Systems (TAMS) at the University of Hamburg. Amongst many other areas5 TAMS
is working on acquiring, processing and applying information from multiple sensory
sources and developing robot-learning technologies like localization and mapping.
The authors of this thesis are students at TAMS and contribute their expertise in
the area of localization and mapping to the 3D-HTRF project. In the context of the
cooperation this thesis has been created at the premises and with the great support
of SICK AG. To further illustrate the specific contributions to the 3D-HTRF project
by the field of robotics, the following section will introduce the reader to mapping as
a research topic.

1.5 Mapping

Mapping traditionally is an important and well researched topic in the domain of
robotics. This thesis will use state of the art approaches of mapping from the field
of robotics and try to apply them in a scenario not typical for robotics.

Robots need a representation of their environment to interact with it or navigate
within it. Those representations often are maps which include information about the
areas the robot can move to and the areas blocked by obstacles.

There are many ways how a robot can retrieve a map, but it boils down to two basic
options. Either it was programmed with a ready-made map or it is processing sensor
readings and creates a map itself by exploring. On the one hand the latter method
allows for dynamic adjustments if the environment changes and the robot can be
deployed in unknown areas. On the other hand implementing mapping algorithms
is a difficult task and running them costs much more processing power than using
static maps.

Mapping algorithms are the base for many advanced robotic tasks with a vast field
of applications. Service robots like automated vacuum cleaners build maps to know
where they already have been and to avoid falling down stairs [PRSF00]. Architects
and building managers can use maps and 3D models of buildings for planning
construction works or utility studies and fire fighters can plan and evaluate emergency

5http://tams-www.informatik.uni-hamburg.de/research/index.php (May, 25th)

9

http://tams-www.informatik.uni-hamburg.de/research/index.php

1 Motivation

operations [HBT03]. A lot of research goes into search and rescue applications,
e.g. in disaster recovery, and regularly competitions are held to help speed-up the
development of new technologies in this area [JMW+03]. Cities are growing larger and
former mining, industrial or other not well charted regions are urbanized. Exploring
old mines, sewers and caves is important prior to urbanizing areas but can also help
in rescue missions for miners or lost persons [aE01, NSL+04, TTW+04, MFO+06].
Also armed forces are interested in mapping technologies for various tasks, most
prominently reconnaissance [TDD+00, Yam04].

These methods can help the 3D-HTRF project since the basic problem of creating
maps for robots is very close to the way how maps are created for the 3D-HTRF
project. The inertial navigation system used with the car can be regarded as a very
accurate odometry source like it is usually assumed to be available for robots and
the Laser Range Finders are used like the sensors of a robot. A main difference to
typical robot tasks is that the car is controlled by a driver and no vehicle controls
or actions have to be determined, but this does not affect the selected mapping
algorithms. The main goal of this work is to take the data collected and assembled
to maps by the 3D-HTRF car and create maps of better quality.

1.6 Simultaneous Localization and Mapping to improve map
accuracy

The term Simultaneous Localization and Mapping (SLAM) is the description of a
problem and the name of a class of algorithms to solve this sort of problem. This
might be confusing at times since this work is about both: specifying the SLAM
problem within 3D-HTRF and solving it using SLAM algorithms. Firstly the problem
is described and then three possible algorithms are compared for their potential to
solve the problem.

SLAM is about solving the mapping and the localization problem at the same time
with the only knowledge being noisy observations from a sensor mounted at the
vehicle and an estimate of its movement (for further details on what SLAM is check
the theoretical background in chapter 4).

In the 3D-HTRF system Inertial Navigation Systems provide good pose data derived
from GPS, movement sensors and dead-reckoning. Sensor observations are available
from the three Laser Range Finders on the roof of the car (the hardware is described
in chapter 2). Now the 3D-HTRF approach is to do mapping only and align the scan
points from the sensors along the trajectory derived from the position data from
the Inertial Navigation Systems. Although the systems used are highly accurate
top of the line devices, the accuracy wished for by the heavy transport company is
not reached yet. Trying to improve the pose information by localizing the vehicle
more precisely within the map data does not work either, because the maps do not

10

1.6 Simultaneous Localization and Mapping to improve map accuracy

exist a priori and suffer from the error one tries to correct. So the only way to solve
this, based on the 3D-HTRF hardware and its restrictions, is to try to solve both
problems, mapping and localization, at the same time, which is the very definition of
the SLAM problem. Interpreting the pose information from the Inertial Navigation
Systems as movement estimation and the scan points from the Laser Range Finders
as observations, then SLAM can work on the data and create maps from it, which
supposedly are more accurate than the input data.

Some adjustments are needed to adapt SLAM algorithms for the 3D-HTRF project.
The most prevalent one being that the observations from the Laser Range Finders
are taken in an unsuitable fashion. For SLAM to work properly the observations
taken at one position need to be found over and over again and associated with other
observations taken at other positions. The Laser Range Finders on the 3D-HTRF
car are measuring vertical planes only, but the observations of interest for SLAM
are to be found in horizontal directions. Thus a method named slicing is used to
compose multiple vertical planes to larger point clouds assuming that the local
positioning error on short distances is small enough to be ignored (slicing is explained
in sect. 5.3.5).

The idea to use SLAM techniques for improving maps of already high quality has
not been researched thoroughly yet. In contrast to other works [MTKW03, MR06,
KSD+09] which use GPS as ground truth to evaluate the accuracy of their SLAM
results, we can not do that because the GPS position is the one we try to improve.

There are many SLAM algorithms which could possibly be suitable for solving the
SLAM problem of 3D-HTRF described. In the following sections we take a look at
the three most common solutions and reason which one to use for this thesis (more
on the different SLAM algorithms is said in chapter 3).

1.6.1 Iterative Closest Point (ICP)

Iterative Closest Point tries to match point clouds by minimizing the quadratic error
between the individual points. It is a common and tried method, so we used a
ready-made framework called SLAM-6D on the data from the above experiment.
Goal of this test was to see if and how well ICP can handle the data from the
3D-HTRF project.

As mentioned before the data from the 3D-HTRF project is not suitable for direct
use by SLAM algorithms and thus the data was preprocessed and composed to
slices of approximately the length of 1 m prior to processing, but no landmark
detection was done since ICP works on the full point clouds (see sect. 5.3 for more
on preprocessing).

The result can be seen in figure 1.6 and is disappointing. Even when the position of
the car is given as start parameter, ICP can not handle the given data at all. Most

11

1 Motivation

Figure 1.6: The SLAM-6D algorithm based on ICP was applied to scan data preprocessed
in the same fashion as the scan data for the FastSLAM algorithm. This figure shows the
result. As can be seen the straight street did not get reassembled at all by the ICP SLAM,
but each slice is going in different directions and trees are pointing up and down.

12

1.6 Simultaneous Localization and Mapping to improve map accuracy

likely the reason for this failure is that the point clouds only have little overlap, but
ICP heavily relies on the fact, that the point clouds are very similar and overlap for
the most part.

Also, matching all points of the point clouds is a calculation intensive approach
because the Laser Range Finders take up to 1,000 measurements every 20 ms each.
The following two SLAM algorithms reduce the calculations necessary by extracting
landmarks (see sect. 4.6 about landmarks) from the point clouds and working on
those.

1.6.2 Extended Kalman Filter (EKF)

Extended Kalman filter-SLAM tries to derive the most likely position by calculating
a joint probability from an estimated position probability and an assumed position
probability from matching observations with known landmarks. A huge disadvantage
is that only one most likely position can be determined and in ambiguous situations
where the data available allows for multiple interpretations of the most likely position,
the EKF-SLAM has to decide on one possibility. Since the algorithm is greedy the
decision can not be reevaluated in a later processing step. Thus mistakes accumulate.
Since 3D-HTRF is designed for large maps, accumulating errors cannot be tolerated.

1.6.3 FastSLAM

Combining a particle filter and an extended Kalman filter allows to follow multiple
hypothesis of the position in parallel and evens out the disadvantages of the EKF.
The algorithm doing so is called FastSLAM. FastSLAM is a well researched algorithm
which is used in many applications and found to be superior to a pure EKF-SLAM
algorithm, e.g. by [SM06] (a complete explanation of FastSLAM is given in sect. 4.7).

With FastSLAM being the SLAM algorithm of our choice this thesis evaluates if it
can be used for improving maps of the 3D-HTRF project.

13

1 Motivation

1.7 Contribution of this thesis

This thesis is an evaluation if the hardware of the 3D-HTRF project is a suitable
configuration to apply a FastSLAM algorithm on the collected data for improving the
quality of the generated maps. In the 3D-HTRF project maps are composed using
only the vehicle pose information provided by the INSs. First a way to preprocess
and adapt the data collected by the 3D-HTRF car is developed and implemented.
This technique is named slicing in this work. Then the FastSLAM algorithm by
M. Montemerlo, S. Thrun and B. Siciliano [MTS07] is extended to fully operate in
three-dimensional space. After writing an implementation of this extended algorithm
it is applied on the 3D-HTRF data. The resulting maps of problematic test cases
are then compared to the input data as generated by the INSs and evaluated for
improvements in their accuracy.

Two advantages can be gained if the above described postprocessing of the 3D-HTRF
data is successful and scan points are aligned better with each others in the resulting
maps. This approach can be used for creating maps with much more detail by
applying many scans of the same area to one map and the costs of the current 3D-
HTRF system can be reduced by replacing expensive INSs with cheap postprocessing
of the sensor data.

1.7.1 Reducing financial costs of the current system

The 3D-HTRF project does not require a precise localization, but high accuracy
within a comparatively small section. The idea is that all information needed is if a
heavy transport will fit through a tunnel, under a bridge or around a corner, but
it is not important to know exactly where this particularly hard to maneuver spot
is placed on the globe. Since there is no need for a global position, an INS is not
necessary as long as the local accuracy conditions are met.

Also the map is not needed during the measuring process. The whole calculation
process can be done offline after the data from the measurement vehicle is transfered
to a desktop computer. The evaluation if the heavy transport can use the recorded
route can be done on the same computer as the post processing step in which the
map data is improved. So no new or more powerful hardware is necessary for the
FastSLAM approach evaluated in this thesis.

1.7.2 Creating maps of higher accuracy using the 3D-HTRF hardware

Some places need multiple measurement drives because of occlusions created by
driving by trucks or stationary structures in the line of sight. Or sometimes just more
detail is needed and thus an area is scanned multiple times. FastSLAM can help
adding such multiple scans of the same area onto each others in the postprocessing

14

1.8 Summary & Overview

step using the recorded sensor data. This is a new feature FastSLAM could make
possible.

Lastly, a highly accurate, but expensive INS can be replaced by a cheaper, less
accurate model while preserving the high accuracy so the system is still able to
perform the task it was designed for, but save costs.

1.7.3 Code quality vs. runtime

Since this thesis is designed as a proof-of-concept work, the focus is not on performance
or efficiency. In fact less performing but easy to understand code is preferred over
fast but complicated code to ensure it works flawless. Time is not a concern for this
evaluation as stated in the introduction of this chapter (see sect. 1.1), but the ability
to understand and replicate this work is. For this reason many decisions made are in
favor of simple structures, but longer runtime.

1.8 Summary & Overview

The 3D-HTRF project introduced in this chapter was built under the assumption
that INSs can reach the position accuracy necessary for the heavy transport company.
It turns out this accuracy is very hard and expensive to reach and especially hard to
repeat when scanning the same place multiple times.

Firstly this thesis assesses how well the charting done in 3D-HTRF works and if the
data produced is suitable to use with readily available mapping solutions from the
field of robotics.

The experiment conducted in this chapter shows that the more expensive Oxford
Technical Solutions RT3040 INS yields better results than the cheaper Xsens MTi-G
INS, as expected. It also showed that the dead-reckoning data from the cars CAN-bus
is surprisingly accurate, too. Although the overall quality of the maps is quite good,
the structure of the scan data is not suitable for directly applying the SLAM-6D
algorithm. There is a lot of room for improvement left, though, and an accordingly
adopted FastSLAM might yield maps of higher accuracy.

The next chapter (chapter 2) describes the hardware used for the 3D-HTRF project
and how it works in detail. This is the same hardware the implementation of this
thesis has to work with, so a well-founded knowledge of it is essential for the rest of
the work.

In “State of the Art” (chapter 3) an overview of the current scientific state on
Simultaneous Localization and Mapping (SLAM) is given and the main approaches
are described. This chapter classifies the FastSLAM algorithm in the scientific
context of the field of mapping in robotics.

15

1 Motivation

The theoretical background (chapter 4) behind FastSLAM lies in probabilistic meth-
ods. This chapter explains the mathematical inner workings of the algorithm.

Then this thesis adopts and implements a FastSLAM algorithm from the field of 2D
indoor robotic scenarios to a large scale 3D outdoor environment. Chapter 5 leads
through the implementation and explains crucial parts with code examples.

In order to evaluate if the 3D-HTRF project’s hardware setup is suitable for Fast-
SLAM and if any of the above specified advantages can be achieved, the resulting
maps are examined for improvements. Consequently the results are discussed in
chapter 6.

Finally in the last chapter (chapter 7) this work is summed up and an outlook for
further research impulses is given.

16

Hardware

2
This chapter contains some information about the hardware used for the 3D-HTRF
project. The hardware is taken unchanged for our work. It consists of a car, a
superstructure with three Laser Range Finders and localization devices.

2.1 Car

The vehicle used for testing is a Volkswagen Passat with three SICK Laser Range
Finders of the type Laser Measurement System 1511 (LMS151, tbl. 2.1 & fig. 2.4) as
can be seen in fig. 2.2. To each side of the car one LRF is mounted vertically and a
third LRF is attached to the back in a way that the scan layer is hitting the ground
about 1 m behind the car (see fig. 2.1 & 2.3). The rear laser scanner is skewed
sideways by a few degrees to potentially get more reflections from surfaces which
do not reflect the laser spots of the sideway scanners in a 90° angle to the car and
to get informations from objects like poles that are also 90° to the ground and fit
between two scan planes. To some extent this allows to look around the corner of
objects and get a better impression of the measured shapes. E.g. detecting a fence
can profit from this sensor arrangement because the pickets cannot be distinguished
from a flat wall if the sideway scanner only measures the flat picket areas facing the
scanner in a 90° angle or measures nothing in the holes between the pickets. But
a slightly skewed scanner will more probably scan the inside surfaces between the
pickets and thus add some more information about the shape of the pickets as if it
was scanning the same surfaces in the same angle.

2.2 Laser Range Finder

The Laser Range Finders are used in the setup of the HTRF-Project are three
LMS151 (see fig. 2.4). They belong to the group of outdoor short range finders and
has as operating limits 0.5 m to 50 m. The field of view is 270 degree and scanning

1https://mysick.com/saqqara/get.aspx?id=im0031331 (April 19, 2011)

17

https://mysick.com/saqqara/get.aspx?id=im0031331

2 Hardware

Figure 2.1: Picture from ibeolaserviewer with a tree on the left. The two scanners on the
side are green and yellow and the one on the back of the car is blue. In the middle you can
see some measured points originated from the vehicle itself.

Figure 2.2: The Volkswagen Passat used by Gustav Seeland GmbH with three SICK
LMS151 laser range finders on the roof. One LRF to scan each side of the car and a third
on the stern of the car.

18

2.2 Laser Range Finder

Figure 2.3: The three scanner are attached to roof rack of the car. The two scanner on
the side are installed vertical. The one in the middle is tilted and can look behind the car.

Figure 2.4: The Laser Measurement System 151 (LMS151) from SICK.

19

2 Hardware

Price approx. e 3,200
Scan angle 270°
Scanning range 50 m with object remission >75%
Scanning frequency Either 25 or 50 Hz
Angular resolution 2.5° at 25 Hz and 5.0° at 50 Hz
Opening angle of laser beam 0.86°
Systematic error Maximal ±40 mm
Statistical error (1σ) Maximal 20 mm
Temperature drift 0.32 mm/K
Connectors 100 MBit ethernet port, RS232 port, CAN-Bus

Table 2.1: Excerpt from the LMS151 data sheet

frequency 50 Hz. When there is a need for a higher resolution and no need for a high
frequency the frequency can be changed to the half. Connectivities are a 100 MBit
ethernet port, serial port to standard rs232 and a CAN-Bus connector. CAN-Bus
is an bus which mostly used by automotive and aerospace industries. As expected
from an outdoor unit the scanner has a rugged housing with enclosure rating of IP
67. Some more technical information can be seen in table 2.1. The actual price is
about 4,500 $2.

2.3 Position data sources

For this work three data sources for vehicle positions are available. The first one is
from the built in sensors of the car and the other two sources are ready-made INSs3

which were bought for the 3D-HTRF project. While cars usually have gyroscopes
and accelerometers which are meant for recognition of unstable driving situations
and not for global localization of the car, INS additionally have GPS4 and are able
to localization a car precisely anywhere on the surface of th earth. GPS has different
service qualities. In this project the free publicly available SPS5 is used as opposed
to the encrypted PPS6 which is reserved for the US military. GPS position accuracy
is mostly measured in meter CEP7, which is the radius of a circle spanning the area
within which the actual position is with 50% probability, or in meter RMS8 which is
basically the same measure as meter CEP but with a 63.2% confidence.

2http://www.robotsinsearch.com (April 29, 2011)
3Inertial Navigation System
4Global Positioning System
5Standard Positioning Service
6Precise Positioning Service
7Circular Error Probable
8Root Mean Square

20

http://www.robotsinsearch.com

2.3 Position data sources

Figure 2.5: The CAN-bus connects all parts of the car and through it one can read out
the sensors and control the car functions.

2.3.1 Car sensors

Modern cars are already equipped with accelerometers and gyroscopes. Airbags,
ESC9, ABS10 and other systems need those sensors in order to work. Usually
all sensors of a car are connected to the cars CAN11 bus (see fig. 2.5) and their
measurement data can be read out over an interface. The Volkswagen Passat used
in this experiment provides information about

course angle in [rad]

yaw rate in [rad
s

]

steering wheel angle (where the steering wheel is pointing at) in [rad]

steer angle (where the front wheel is pointing at) in [rad]

cross acceleration in [m
s2

] and

velocity in [m
s

].

This information is sufficient to calculate a position but for retrieving a position
data dead reckoning has to be used and the position the car was when the system
is turned on is the origin of the coordinate system. Using the information about
velocity, time and direction the next position is calculated. So there is no global
localization.

9Electronic stability control
10Anti-lock braking system
11Controller–area network

21

2 Hardware

(a) Xsens MTi-G (b) Oxford Technical Solutions RT3040

Figure 2.6: These two INSs were used in this thesis. The Xsens MTi-G (a) is a small,
cheap and less accurate INS compared to the Oxford Technical Solutions RT3040 (b).

2.3.2 Xsens MTi-G

Xsens is a Dutch company which sells an INS called MTi-G12 at about e 3,50013

which is a fair price when comparing to RT3040 mentioned in sect. 2.3.3. The picture
of it are shown in fig. 2.6(a). The products leaflet14 of the MTi-G opens with this
self-description:

The MTi-G is a miniature size and low weight 6DOF Attitude and
Heading Reference System (AHRS). The MTi-G contains accelerometers,
gyroscopes, magnetometers in 3D, an integrated GPS receiver, a static
pressure sensor and temperature sensor. Its internal low-power signal
processor provides real time and drift-free 3D orientation as well as
calibrated 3D acceleration, 3D rate of turn, 3D earth-magnetic field, 3D
position and 3D velocity data.

Price approx. e 3,500
Position accuracy SPS 2.5m CEP (50% confidence)
Roll/Pitch accuracy <0.5°
Heading accuracy <1°
Connectors RS232 port, USB port

Table 2.2: Excerpt from the Xsens MTi-G data sheet

12http://www.xsens.com/en/general/mti-g (April 21, 2011)
13http://damien.douxchamps.net/research/imu/ (April 21, 2011)
14http://www.xsens.com/images/stories/products/PDF_Brochures/mti-g%20leaflet.pdf

(April 21, 2011)

22

http://www.xsens.com/en/general/mti-g
http://damien.douxchamps.net/research/imu/
http://www.xsens.com/images/stories/products/PDF_Brochures/mti-g%20leaflet.pdf

2.4 System costs

2.3.3 Oxford Technical Solutions RT3040

Oxford Technical Solutions offer a range of high-precision INSs coming with ac-
cordingly high pricing ([JD06] mentions some prices). The RT304015 shown in
fig. 2.6(b) is one of their top models using SPS, and if available also Satellite-Based
Augmentation System (SBAS) which is a class of local satellite-based GPS correction
signals and operated by local governmental institutions. The concept of SBAS is
to have well surveyed stationary receivers which measure satellite signals and other
environmental data which might influence the GPS signal and calculate a correction
signal which is sent out through satellites and can be received for free by users to
correct their GPS signal. In Europe the European Space Agency (ESA) operates
the European Geostationary Navigation Overlay Service (EGNOS) which is used in
the context of this work since all experiments took place in Germany. Additionally
the RT3040 can handle OmniStar HP correction signals, if available. OmniStar is a
proprietary, encrypted differential GPS service using its own satellites covering most
of the landmass of earth. In order to use it a subscription is needed and for the best
accuracy class called HP a yearly fee of $2,500 has to be paid16.

Price approx. e 41,000 + $2,500/yr
Position accuracy SPS 1.5m CEP (50% confidence)
Position accuracy SBAS 0.6m CEP (50% confidence)
Position accuracy OmniStar HP 0.1m CEP (50% confidence)
Roll/Pitch accuracy 0.03° 1σ-interval (68.27% confidence)
Heading accuracy 0.1° 1σ-interval (68.27% confidence)
Connectors 100 MBit ethernet port, RS232 port

Table 2.3: Excerpt from the Oxford Technical Solutions RT3040 data sheet

2.4 System costs

Summarized the roof rack used for the 3D-HTRF project has a total cost of about
e 12,000. This contains the rack itself, the lasers, a computer and some cables. When
it is decided to use the RT3040, its portion of the costs is more then 75%. Even
when the car is included in the total costs of the system, the INS part is over 50%.
So when the INS could be replaced by a cheaper INS or completely, the costs of the
whole system would be dramatically reduced.

15http://www.oxts.com/default.asp?pageRef=20 (April 21, 2011)
16http://www.omnistar.com/pricing.html (May 2, 2011)

23

http://www.oxts.com/default.asp?pageRef=20
http://www.omnistar.com/pricing.html

2 Hardware

3· LMS151 e 9,600
Xsens MTi-G e 3,500
Oxford Technical Solutions RT3040 e 41,000
Computer, cables, rack, etc. e 900
Car e 25,000
Total Costs: e 80,000

Table 2.4: Approximate costs of the complete 3D-HTRF hardware. This table ignores
running costs for the satellite corrections signal for the RT3040 which is at $2,500/yr.

2.5 Summary

The 3D-HTRF system is basically a car equipped with three Laser Range Finders, a
high precision Inertial Navigation System and a computer to control all the devices
and collect their data. The configuration of the Laser Range Finders is catered to a
pure mapping task and will cause problems with the usual assumptions of SLAM, as
will be discussed in future chapters.

The hardware of the 3D-HTRF project is quite expensive and the high precision
INS is more than half of the total costs. Thus aiming for replacing an INS with
comparatively cheap processing time will cause tremendous savings on the project.

24

State of the Art

3
As laid out in the Motivation (chapter 1), SLAM is an approach promising to
improve the maps created by the 3D-HTRF project. Thus in the State of the Art an
introduction to Simultaneous Localization And Mapping is given and a look on the
history will be done, which shows the relevance of SLAM in research. It is presented
that SLAM can be used in many scenarios with various sensors. Further the filters
which are commonly used for SLAM are named and it is said which ones and why
they are used for FastSLAM. The last part describes some typical problems and
requirements associated with SLAM.

3.1 The problem of Simultaneous Localization And Mapping

Simultaneous Localization and Mapping is often abbreviated SLAM and describes
the problem of determining a robot’s path and its surroundings at the same time.
This is one of the most fundamental problems of robotics and occurs when a robot
has neither a knowledge of its surroundings like a map, nor any information about its
pose. All the information available to the robot are the readings from a sensor and
the controls of its propulsion device. This little information is enough to solve the
problem of mapping the environment and localizing within the map. As [MTS07]
states each of these problems is well studied and feasible solutions are available, but
the combination of those problems are in a chicken-or-egg relation to each others.

When a good map of the environment is available and the robots task is to find
its position in the map, its called a localization problem. This can be done by
observing and detecting landmarks in the sensor readings and matching them with
the corresponding landmarks extracted from the map. Localizing the robot then is
done by triangulation over these landmarks.

With the knowledge of the exact poses of the robot while taking readings from a
sensor, a map can be built by simply combining the pose of the robot, the sensor
reading and possibly the sensor’s orientation over time. The resulting map will hold
all sensor readings in the correct relations to each others. Solving this problem is
called mapping.

25

3 State of the Art

Trying to solve both problems at the same time is harder than solving both problems
separately, because they depend heavily on each other.

3.2 History of SLAM

First mentions of the probabilistic SLAM problem go as far back as 1986, when the
problem was first formulated on the IEEE Robotics and Automation Conference held
in San Francisco [DB06]. In 1995 the acronym ‘SLAM’ was first coined by [DRN96]
on the International Symposium on Robotics Research. Since 2001 research interest
in the topic has picked up rapidly. This can be seen in fig. 3.1 where the blue chart
shows the new published papers per year occupied with SLAM. The red chart are
the ones occupied with 3D SLAM like this thesis.

Figure 3.1: Development of scientific interest on Simultaneous Localization And Mapping
by the number of publications in the IEEE publication database. SLAM is a growing field
of research.

Typical applications for SLAM are found in the field of robotics. A robot equipped
with one or more sensors is set in an unknown environment and given the task to

26

3.3 Common sensors used with SLAM

navigate and map the area. Managing this task is considered a basic ability for
autonomous robots.

SLAM is not restricted to indoor or outdoor land-bound vehicles and for example is
actively used in airborne devices [KS07], in underwater scenarios [ESLW06] and to
map a mine [NSL+04].

For truly autonomous robots it is critical to process all sensor data and estimate its
position in real-time, also called online. Without the processing done a robot cannot
decide where to go next and thus is forced to wait for the calculations to finish.

In contrast offline means that the robot only collects sensory input and is either
remote controlled or moving blind, not doing more than collision avoidance. The
collected sensor and trajectory data is then processed after the robot finished its
tour.

The advantage of offline over online is that in offline processing information from
the future can be used since all processing is done after the recording. Usually when
using offline SLAM the problem formulation goes a bit further than in online SLAM
where the current position is often sufficient while in offline SLAM often the full
path is sought. Offline processing then again has no or little time restrictions and
the collected data can be transferred and processed on any computer, making large
processing power available.

Contemporary 3D scanning technologies cannot take scene impressions instanta-
neously and need not-negligible time for one scan due to nodding or rotating a 2D LRF,
which leads either to an unattractive stop-scan-move paradigm or distortions due to
not properly modeled motion having to be accepted (see [NCC+07, HDB+10]).

Cole and Newman also proposed an approach called segmentation in [CN06], which
combines several scans to a point cloud large enough for processing. The under-
lying assumption is that if the vehicle is driving somewhat straight the odometry
information is accurate enough to ignore the error for a couple meters.

[DB06] and [BD06] offer a comprehensive overview of the history and the state of
SLAM as a scientific problem in 2006.

3.3 Common sensors used with SLAM

The sensor technology used has a high influence on the SLAM algorithm. Depending
on the sensor type different information is available in changing frequency, detail
and accuracy.

Most systems can be divided in two-dimensional and three-dimensional approaches.
With respect to the computing power available in the beginning of the long history of
SLAM it is not surprising the first experiments were using two-dimensional approaches
only. 2D is usually sufficient for robots which only operate indoors or in similar

27

3 State of the Art

environments with a flat plane the robot moves on and a 3D model is not necessary
for operating a robot safely. With the ongoing development of robots upcoming
new possibilities to move in space create a demand for proper three-dimensional
perception and SLAM. Although there are more papers on 2D solutions, interest in
researching 3D systems is growing (see fig. 3.1).

3.3.1 LIght Detection And Ranging (LIDAR)

Lidar devices are emitting laser pulses to measure distances to objects. The basic
idea is that the light of a laser is only rarely dispersed when traveling through air and
reflected back to the emitting source still strong enough to recognize the reflected
light using a photo diode. One laser beam only yields one distance measurement. The
measurement is quick though, since light travels very fast. To make better use of a
Lidar the high measurement speed is utilized by directing the laser beam in different
directions and taking measurements in quickly repeating patterns. Because the laser
light used usually is close to the range of human-visible light, Lidars produce many
scan points representing environments similar to the way the human eye recognizes
them. Of course there is no color information or just a rudimentary interpretation of
the distortions of the reflected light wave compared to the one sent out. The most
common design of Lidars for robotics and similar uses are Laser Range Finders which
are explained in detail in section 4.1.

3.3.2 Camera

Cameras capture pictures at a high frequency and can gather a lot of information
at once. For example a normal webcam like the Logitech QuickCam 3000 delivers
640 × 480pixel

f
· 30f

s
≈ 9, 000, 000pixel

s
. Compared to a LRF which measures about

1000points
scan
· 50 scan

s
= 50, 000points

s
it is much more but the information of a pixel is not

as interesting as the points of the LRF, especially when doing SLAM. The missing
depth information using camera pictures makes the building of maps and doing
SLAM difficult. Images require a lot of processing to extract landmarks usable for
SLAM. Since cameras work in the visible spectrum of light but do not have their
own light source they are very dependent on lighting conditions and recognizing the
same view again a second time can be difficult, due to different lighting present.
Cameras are cheaper than LRFs and do not have any moving parts, which makes
them favorable over LRFs in cost-sensitive applications or if shock-resistance is
important. Some recent work on SLAM working only with cameras can be found
in [Dav03], [SLL05], and [KBO+06].

[ATS02], [NCH06], and [BZB+10] tried combining cameras and LRFs and fusing the
data to seize the advantages of both technologies.

28

3.4 Iterative Closest Point

3.3.3 Radar

Radar stands for Radio Detection and Ranging and is a technology which uses radio
waves to detect metallic objects. Like all electromagnetic waves radio waves travel
at the speed of light. Usually an impulse is transmitted and the echo from one
direction is observed. Using the time passed and the speed of light, the distance can
be calculated. Good sensors even take care of the reflected frequency and compare it
with the frequency of the sent impulse and can calculate the relative speed of the
target by considering the Doppler effect. R. Rouveure, P. Faure and M.O. Monod
use a K2Pi FMCW radar sensor in [RFM10].

3.3.4 Sonar

Sonar stands for Sound Navigation And Ranging and based on the same process as
laser scanners and Radar sensors. A short wave is sent out an the echo is looked up.
In case of Sonar the wave is a pulse of sound, so in this case the distance has to be
calculated with the speed of sound. The consequence of this is that because of the
lower speed compared to the speed of light there is no need for a clock that is as
exact as the ones used in active Lidar or Radar sensors. On the other hand this has
the result that the time needed for one scan increases. The second disadvantage of
sound waves is the different speed of sound in different media. The speed in air is
different from the speed in water, and even in water, where Sonar sensors are mostly
used, the speed depends on the temperature, the depth and the salinity. Besides,
sonar sensor arrays usually have a lack of information compared to LRFs, as shown
in [TNNL02].

3.4 Iterative Closest Point

Iterative Closest Point or ICP is a method researched since the beginning of SLAM
research [AHB87]. The idea is to minimize the squared error of the euclidean distance
of the closest points between two point clouds in iterative steps. This is done using
translation in both directions and one rotation which leads to three degrees of freedom
(3DOF) in the two-dimensional case and three directions and three rotations (6DOF)
in 3D. Due to sensory noise, different sensor positions and viewangles, and changes
in the world between observations, sensors generally do not measure the exact same
spot on an object. The points representing the same object in separate point clouds
usually differ largely. Thus it is not possible to find a perfect match between two
point clouds even if of the same area. Therefore the algorithm is stopped after a
minimal error threshold is achieved.

ICP is an old (since 1992: [BM92]), basic and intuitive approach to SLAM which
is easy to implement and has widespread use (e.g. in [LM97, NLHS07]). Although

29

3 State of the Art

it can be improved (e.g. in [RL01]), it is a computationally very expensive method
with major drawbacks.

Especially in non-static environments moving objects which are scanned once with
every observation but at different positions will show up multiple times in the final
map. These errors cannot be corrected, sum up and increase the complexity of the
matching process.

Another problem is that ICP only maintains one hypothesis of the position of the
robot. Under some circumstances the position of a point cloud might be ambiguous
and due to inaccurate odometry data the seemingly best pose estimate might actually
be off by far. In such a case ICP does not have a way to detect or correct this
mistake, but has to decide on one solution only.

Many methods are variants of the basic ICP principle or very similar in their
approach. In Force Field Simulation [LALM07], for example, every point of a
point cloud is interpreted as a mass influencing a gravitational field. Now forces
similar to gravitational forces move the point clouds in the gravitational field until a
configuration of least energy is reached.

3.5 Analytical approaches

Another approach to the SLAM problem is to model the error of the odometry and
sensor data and determine the statistically most likely current position. For this
problem Kalman filters are often used and are widespread since long. Rudolf E.
Kálmán explained and published the concept of the Kalman filter most prominently
in [K+60]. Since then Kalman filters have undergone a lot of research and adaptions
and there are many variants. The most important Kalman filter variants used in
SLAM are introduced in the following sections.

3.5.1 (Discrete) Kalman Filter

The Kalman filter is named after Rudolf Emil Kálmán, who presented it in A New
Approach to Linear filtering and Prediction Problems [K+60]. The Kalman filter
is an algorithm which calculates a presumed state and a covariance of a measured
object. Prerequisites are the availability of several measurements and the knowledge
of the error of the used measurement device.

xk the state of the system at time k

Pk covariance of the state of the system

Fk main transition matrix from one system state to another

Bk dynamic of control vector

30

3.5 Analytical approaches

Figure 3.2: This diagram of the Kalman filter updates from time k-1 to k+1 shows how
all the different factors influence the new estimate. (Taken from http://www.marsa4.

com/jmla/index.php?option=com_content&view=article&id=52&Itemid=57 on June
1st, 2011)

uk control vector

wk process noise which is assumed to be drawn from a zero mean multivariate normal
distribution N(0,R) for state transition

zk observation

Hk observation conversion matrix

vk process noise which is assumed to be drawn from a zero mean multivariate normal
distribution N(0,Q) for observations

The first step of a Kalman filter iteration is to estimate a new state xk|k−1. To do so,
we need the old state xk−1 and the transition that contains of Fk and a controlpart
Bk · uk. The noise of the system which generate as a normal distribution is respected
when the covariance is calculated.

xk|k−1 = Fkxk−1 + Bkuk (3.1)

The second step is to take a look on the measurement. To use the measurement we
could have to do a some transformation for example to get the sensor data to the
coordinate system we used for xk which is mostly a world coordinate system ENU or
at least a system where the starting position is the origin. In some scenarios (e.g. in
Thruns book FastSLAM [MTS07]) the used system is in a vehicle coordinate system.
With the result that each time all landmarks for which calculation the Kalman filter
is used have to be updated when the vehicle was moved.

The part vk is again the noise represented by a normal distribution which takes part
in the covariance calculation.

zk = Hkxk (3.2)

31

http://www.marsa4.com/jmla/index.php?option=com_content&view=article&id=52&Itemid=57
http://www.marsa4.com/jmla/index.php?option=com_content&view=article&id=52&Itemid=57

3 State of the Art

Both zk and xk consist of a mean value which is a non-probabilistic part and the
probabilistic noise represented by a covariance. To get the new mean there are now
two possible states and the Kalman filter has to decide which one to believe more
and which one less.

xk = zk ·K + xk|k−1 · (1−K) (3.3)

Kk is called Kalman gain and can be calculated by taking a look on the covariances.
The approach is that the covariance of the new state has to be as small as possible.
Considering that even a bad measurement (high covariance) has a self-information
and so these states should not be ignored completely the filter takes more respect to
the state with a smaller covariance.

Kk = Pk|k−1H
T
kS−1k (3.4)

Pk|k−1 is the estimated covariance based on the same parameter as the estimation of
the state.

Pk|k−1 = FkPk−1F
T
k + Qk (3.5)

and Sk is the so called Innovation covariance

Sk = HkPk|k−1H
T
k + Rk (3.6)

at last the new covariance is

Pk = (I −KkHk)Pk|k−1 (3.7)

The Kalman filter can be used in many scenarios like fusion of several measurements
of different sensors for the same fact. For example, the localization with the help of
GPS and odometry data (see sect. 4.2)

A problem of Kalman filters is that not all systems can be described by the equation
(3.1) and (3.2). For example sensor data of laser-scanners mostly given in a range
and some angles must be converted in a world coordinate system. This is a nonlinear
function and so the result of the conversion of the covariance no longer is a normal
distribution or sometimes the measurement itself is a non normal distribution and
cannot or should not be estimated as a normal distribution. The first problem the
extended Kalman filter is trying to solve by a approximation of the observation
conversion matrix with help of a Taylor series (see sect. 3.5.2). For the second
problem there is no analytical solution and the only way is to use a numerical
approach (see sect. 3.6).

3.5.2 Extended Kalman Filter

Opposed to the Kalman filter the extended Kalman filter assumes that the state
transition function and the transformation measurement can be non-linear functions,

32

3.5 Analytical approaches

too. Therefore the extended version does a linear approximation of the state to
calculate the covariance while still using the same main concept of the Kalman filter.

(3.1) with the new state transition function

xk = f(xk−1,uk−1) + wk−1 (3.8)

(3.2) with the new measurement transformation

zk = h(xk) + vk (3.9)

To do so a Taylor series is used. A representation of a function as a Taylor series is a
sum of an infinite number of summands. In the normal case the number of summands
is because of the performance limited. In this case functions are represented in the
surroundings of certain points. The more summands are uses the better is the
approximation around the point or the space in which the error is smaller than a
given epsilon.

∞∑
n=0

f (n)(a)

n!
(x− a)n (3.10)

For the extended Kalman filter the first Taylor polynomial is needed.

f(a) +
f ′(a)

1!
(x− a) (3.11)

When we transfer this function to our case there are two application scenarios. First
to calculate the mean x and a are the same, the second summand is zero and only
f(x) left. The second scenario is the calculation of the covariance. In this case the
only thing needed is the difference between two results. From this and the linearity
of the function it follows that no constant value has to be attended and only f ′(a) · x
left and f ′(a) can be insert for Fk and Hk.

3.5.3 Further Kalman Filter

Over time, there are many more variants of the Kalman filter which are mentioned
here but not treated further. The first is the Unscented Kalman filter presented in
1997 [JU97] and the second the Kalman–Bucy filter was the first version that can be
used for systems using continuous time [BJ05].

33

3 State of the Art

3.6 Numerical Approaches

A numerical analysis based on the idea to calculate continuous mathematical problems
by calculating only some values. Based on this results new points are selected and
new values are reckoned. Of course this can only create an approximation but for
n iterations and limn→∞ it should be the same as the result of the analytical
analysis if it exists.

It is generally assumed that the process to be calculated can be represented by a
Markov process. Therefore any new state has to be predictable from the previous
state without further information from the past. Also it is assumed that the system
satisfies the Chapman-Kolmogorov equality.

Chapman-Kolmogorov equation according to [Wen07]:

p(xk|Yk) =
p(yk|xk) · p(xk|Yk−1)

p(yk|Yk−1)
(3.12)

particle filter, also known as Sequential Monte Carlo method (SMC), is a numerical
approach to solve the Problem of a state estimation. Like in any other numerical
solution there are no functional limitation so that the state transition function and
the transformation of the measurement can be out of any function set. Even w and
v need not to be out of the set of normal distributions.

xk = f(xk−1,uk−1) + wk−1 (3.13)

zk = h(xk) + vk (3.14)

The basic idea is to create some particles which each represents one possible state of
the system so that the sum of all particles is an approximation of the distribution of
the probability of the system at the time k.

∫
f(xk−1)p(xk−1|y0, . . . , yk−1)dxk−1 ≈

1

P

P∑
L=1

f(x
(L)
k−1) (3.15)

Proceeding from the state xk−1 of the particle the new state xk of the particle is
calculated by 3.13. Based on the measurement each particle gets a rating representing
how well the measurement fits with the state. Now the particles with a low rating
have to be removed and those which have a good matching should survive or even
should be used to get new particles out of them. This procedure is called resampling.
Resampling is a kind of importance sampling and there are a lot of algorithms but
each one has to interpret the rating as a probability. The probability if it is used one
or more times again or not.

34

3.7 FastSLAM

3.7 FastSLAM

FastSLAM is an algorithm that was developed by Michael Montemerlo, Sebastian
Thrun, Daphne Koller and Ben Wegbreit [MTKW02]. It is based on the idea that
particle filters have features, that could be useful to solve the SLAM-problem. This
is e.g. the ability to handle multiple possibilities independently and that it can be
done over a longer period without neglecting one. Unfortunately this cannot be
transferred fully to an implementation because it will not be practical. There are
too many unknown variables that have to be presented by a probability distribution.
The number to cover this high-dimensional space with particle would be too large.
Because of this restriction FastSLAM attempted to use the particle filter only in a
part of the problem.

SLAM can easily be divided in two parts. The first is the localization of the vehicle
and the second is the update of the map. The localization is done with the help of
the odometry and the comparison of the old map of time k − 1 and the measured
data. The new position is a combination of the odometry and the position where the
measured data matches best with the data already known from the map. Sometimes
there is more than one position that can be evaluated as well. These are mostly
not as close together that they are unsuitable for presentation as a normal function.
This situation can usually only be solved after a longer time. This makes it difficult
for the Kalman filter and suggests to use a particle filter.

The map update step is different, because it is about whether existing points of
the map should be postponed again because they have previously been measured
incorrectly. The measured values can be approximated as a normal distribution as
well as the points of the map that are older measured values. The reunion of both is
exactly what a Kalman filter is made for.

So FastSLAM is a combination of a particle filter for localization and a Kalman
filter for the map update. An interesting work about FastSLAM made by B. Steux
and O. El Hamzaoui [SH09]. Here a minimal minimal version of the algorithm is
implementated. Sebastian Thrun has prepared a lot of works. Two of his books
are [MTS07] and [TBF05] and with J. Nieto, J. Guivant and E. Nebot he presents a
solution for the data association of the map and the measurements [NGNT03]. A
mapping in real time algorithm is presented in [Men07].

3.8 Related work

Most works about SLAM do not use GPS for positioning, but rely solely on odometry
data for their motion model. If GPS is used it usually is only for comparing the
positions derived with a ground truth and to assess the results. The goal basically is
to replace GPS by SLAM.

35

3 State of the Art

[KS04] and [Car08] go a bit further and use GPS for mapping purposes. SLAM is then
used to compensate the loss of a GPS signal, but the results are still only compared
to a GPS position. This problem is similar to the problem an INS encounters when
driving through a tunnel and loosing the GPS signal for a while.

Some works like [BLO+09] fuse stereo vision and GPS with SLAM to create highly
accurate maps of large areas. The difference to our work is that we do use Laser
Range Finders instead of stereo vision. The difference in the sensor technology
is immense, since cameras and LRFs gather different amount of different data at
different speeds. Images can be used for SIFT and similar feature detectors which
do not compare to landmark extraction methods on scan point clouds.

Altogether there is only little work done with the aim of using GPS and LRFs to
create highly accurate maps using FastSLAM. Usually the accuracy needs are lower
than the ones asked for in heavy transport route planning.

3.9 Other SLAM related research topics

A lot of effort is put in improving the quality of the generated maps [WSBC10],
speed [LNHS05], complexity [SH09] or other aspects of the above described methods
by modifying them slightly. But there are more general approaches on how to solve
the SLAM problem. Some approaches are going further than the basic set of methods.
Atlas [BNL+03] is a framework which represents the poses of the system as nodes
in a tree and the matching of landmarks is done by using a signature. Another
complex framework is GridSLAM [HBFT03]. It contains a particle filter and grid
maps. Although only designed for 2D it has a huge number of algorithms for example
for loop closing (see sec. 3.9.1).

3.9.1 Loop-Closing

Although SLAM is capable of correcting the robot pose and creating a good map
of the environment, small errors remain and accumulate. These errors become very
obvious when a robot moves in a loop and meets its path at a later point in time
again. At such junctions the previously created map must match up with the recent
robot pose and sensor data, but often this is not the case because of the accumulated
error. The distance between the expected position of the observation and the position
of the corresponding landmark is too far. To detect the loop it is necessary to try to
match the observations to the whole map. This is very expensive. Therefore this
can only be done rarely. When a match is found the trajectory has to be updated
because of the correction of the last position. To do so a method called relaxation
is used which smooths the trajectory in a recursive manner all around the found
loop (see sect. 3.9.2). This whole correction process is named loop-closing and a
commonly discussed topic (e.g. in [ED08, SHB04, CN07]).

36

3.9 Other SLAM related research topics

3.9.2 Relaxation

maps created with a SLAM algorithm often have local distortions. During a typical
SLAM process the latest scans point cloud is added to the current model at the most
likely position estimated from the last position. This process is repeated iteratively
and position errors due to dead reckoning from odometry accumulate. Estimated
positions can be represented by dots in a graph in which a line stands for an estimate
of one position from another. Correcting each position in relation to its connected
neighbors iteratively uses all position estimates in every direction instead of the least
one only. For the correction a simple mean position of all estimates about a position
is sufficient. Relaxation is shown to yield globally good results [DMS00]. A more
complex algorithm is shown in [FLD05]

3.9.3 Kidnapped Robot Problem

In SLAM an estimate of the current robot position is needed. These estimates
are often taken from a robots odometry information. If a robot is accidentally or
forcefully taken away from its current position without updating the pose estimate, the
estimate is wrong and the SLAM algorithm cannot succeed properly. Unfortunately
this can happen very easily by unforeseen events. A robot might tumble down
some stairs, move in and out an elevator at different levels, drive over a conveyor
belt, taken by people and set down at a different place, and come into many more
situations where the pose estimation will be rendered useless. This Problem was
first mentioned in [EM92] and [Thr02] and [TNNL02] address this issue in detail. If
there are possibilities for global localization (see sect. 3.9.4) there is no kidnapped
robot problem. This is because in a global localization the system assumes that the
starting position is not known and if a kidnapped robot situation is suspected it can
be easily solved by restarting the global localization.

3.9.4 Global and local localization

If one needs global localization, one has to assume not to know the starting position.
In contrast to a local localization, which creates a map starting from a given or freely
chosen position (usually the origin of coordinate system), the global localization is
used to create a general map. This general map can subsequently be extended or
linked with other maps. It is the task of the system to acquire its own position from
the measurement data. This can be done by a given map where the system has the
task to find the position at which the measurement data adjusts to the recorded
objects in the map. A typical approach to do this is the Monte Carlo Localization
which was introduced in [DFBT99]. The algorithm tests some possible positions in
the map and around the positions that provide the best results further positions are
tested. Sometimes there is the need of more than one scan to solve the localization

37

3 State of the Art

problem. Much easier is a global localization when using artificial landmarks such as
GPS satellites (see sect. 4.6).

In considering the global localization the biggest problem is the starting position.
This can be everywhere on earth, or in other terms, the covariance of the starting
position is nearly infinite. To obtain a global position there is the need of a recognition
and an identification of a landmark, whose global position is known. This can be
a static object, for example a big building, or a dynamic object whose temporary
position is known. This is the case when we are looking at GPS satellites, which
send signals with their time and an identification, so that the current position can be
calculated. At least three landmarks are needed to get a position in three dimensional
space.

When we consider local localization we assume that the global starting position is
known or a completely new map is built, so that the starting position is unimportant
because there are no other entries yet. In this case the origin is typically taken as the
first position. Starting from here the trajectory is calculated. To do this odometry
data or data of sensors for acceleration and gyroscopes are used.

3.10 Summary

SLAM is a well studied and yet still very active research field. It has many applications
and much potential to be improved even further. A multitude of methods and variants
thereof exist to choose the best option for any task and sensor type.

The extended Kalman filter and the Particle filter are of special interest to this work
because they are the basis of the FastSLAM algorithm whose implementation is a
central part of this thesis.

There is only little research in using GPS as a position estimate to create highly
accurate maps, but instead most works try to replace GPS by SLAM. This thesis
is a novel attempt to improve maps by assuming maps as input for a FastSLAM
algorithm.

Lastly some important fields related to SLAM were introduced. The Relaxation
technique introduced here will be dealt with later in this work.

38

Theoretical background

4
After giving an overview of the state of the art in SLAM research and introducing
the basic concepts of the main techniques, this chapter gives a detailed introduction
to the theoretical background needed to implement a FastSLAM algorithm for the
3D-HTRF project. The chapter starts with a close view on how the hardware used
in the 3D-HTRF project works and point out the aspects important to this work.
Because of the characteristic errors done by the Xsens MTi-G INS a part of this
chapter is dedicated to the technique of relaxation as a measure to correct those
errors. Strictly speaking this is not related to FastSLAM, but it can improve the
quality of the generated maps and thus helps achieving the goals of this thesis.
Then landmarks are introduced and discussed. Landmarks are the basis on which
the matching process of the FastSLAM algorithm works. Lastly we go through a
complete round of the FastSLAM algorithm, step by step.

4.1 Laser Range Finder (LRF)

A LRF is an instrument for measuring distances and angles with a laser whose beam
is reflected by a rotating mirror onto an object and then received by a photo diode
after being reflected back by the object hit. There are two possibilities to interpret
the difference between the sent signal and the received one. Either the phase shift
method or time of flight is used to calculate how far the laser beam traveled. LRFs
usually work in a triangular plane and provide accurate distance and angular readings.
These capabilities make LRFs an ideal choice for use cases where 2D is sufficient and
can be extended with a rotating or a nodding mechanism for the 3D case.

4.1.1 Infrared light

The laser light used for laser range scanners usually is at a wavelength around 900nm
(905nm for the LMS1511). This is well within the infrared spectrum of light which is
invisible to the human eye, but close to the visible range and can be made visible

1https://mysick.com/saqqara/get.aspx?id=im0026550 (May 12, 2011)

39

https://mysick.com/saqqara/get.aspx?id=im0026550

4 Theoretical background

Figure 4.1: This schematic shows an Ibeo Alasca LRF and its inner workings. Ibeo was a
subsidiary of SICK AG, the manufacturer of the LRFs used in this thesis. Ibeos Alasca
model uses a very typical working principle shared by many LRFs.

40

4.1 Laser Range Finder (LRF)

with the help of night vision goggles, if necessary. Infrared light is behaving almost
identical to visible light in terms of optics as in reflectivity and transparency of
certain objects like glass, metal or stone. Due to these similarities to human vision,
humans can understand and handle laser range finders intuitively. Generally a LRF
can see as well and as much as the human eye, but with less detail due to the laser
beams large diameter. Also infrared lasers are well established, cheap and available
in high quality.

The scanners mostly belong to the group of class 1 lasers and do not harm or distract
any human next to an operating laser range finder.

In the next two sections the two commonly used methods for determining the distance
a laser pulse traveled are explained.

4.1.2 Time of flight

The obvious method is to measure the time light needs to travel from the emitting
laser to the reflecting object and back to the receiving photo diode. Since the speed
of light is constant one can calculate the distance D by

D =
c · t

2
(4.1)

With c being the speed of light and t being the time the laser pulse needed to travel
from its source to the photo diode.

For a good measurement resolution a good temporal resolution is required. For this
method there is a need for frequencies in the GHz range which raises the costs for
this technology. For example for resolution of 1cm 17GHz is necessary. Then again
this technique is very robust and works very well on long distances.

4.1.3 Frequency phase-shift

The sent-out laser pulse’s power is altered in a sinusoidally pattern and the simulta-
neously measured reflection is compared with the signal sent. The shift in the phase
of this signal enables one to calculate the distance the signal traveled.

Let

f0 be the modulation frequency

∆φ the phase-shift between sent and received signal and

D the distance between the LRF.

41

4 Theoretical background

Figure 4.2: The phase-shift technique modifies the laser beams light intensity in a long,
sinusoidal curve and measures the incoming laser beams intensity. From the difference the
length of the phase-shift can be calculated and the distance to the object derived.

Then the distance to the object is found by this equation [NF06]:

∆φ = 4πf0
D

c
(4.2)

D =
c ·∆φ
4π · f0

(4.3)

The phase-shift can be derived from the difference of the outgoing and the received
laser intensity as shown in fig. 4.2.

As can be seen in 4.3 the distance is calculated without involving the time. This
makes the laser scanner using phase-shift cheaper than the ones using time of flight,
because precisely measuring short time spans like the time light needs to travel
to a close by object and back is expensive, as explained in the previous section.
The first disadvantage is the restriction of range because of the period of the sinus
function which only can be increased at the cost of accuracy. Some manufacturers
try to circumvent this by using multiple frequencies. The second disadvantage is
that sometimes the color and other reflection properties of the measured object have
an effect on the reflected laser beams which affect the measurement range negatively.

42

4.2 Inertial Navigation System (INS)

4.1.4 Echo pulse width

When a laser beam is sent out the scanner records the light that is returning. The
intensity of this light can be plotted over time. Each time this function crosses a
threshold from low to high it is interpreted as a reflection of an object and a distance
is calculated and returned. The echo pulse width of a measurement is the width of
the intensity curve at the threshold level.

4.2 Inertial Navigation System (INS)

An INS is a system that estimates the position of an object to which it is attached.
They are mainly used in aviation and composed of a GPS part and an inertial part
which is called inertial measurement unit (IMU). As GPS part nearly every GPS
correction standard (see sect. 4.2.2) is available even sometimes several standards
are implemented and are unlocked according to customers request. The information
from the IMU is combined with the GPS position for example with the help of a
Kalman filter, but is mostly the secret of the INS manufacturing company.

4.2.1 Inertial Measurement Unit (IMU)

An IMU is a combination of three accelerometers and three gyroscopes to determine
all 6 degrees of freedom of a 3d position. The accelerometers for the relative position
(x, y, z) and the gyroscopes for the orientation (yaw, pitch, roll). A problem of the
IMUs is that to get good results a very precise calibration is necessary. A good
introduction to INSs is a Technical Report from Oliver J. Woodman [Woo07]. For
detailed information on the INSs used see the hardware description in sect. 2.3.

4.2.2 Global Positioning System (GPS)

GPS is a position system based on satellites with atomic clocks, which send out
their time and identification to the earth’s surface. From the information of three or
more satellites the position of the receiver can be calculated (see fig. 4.3. To increase
the accuracy there are some services that focus on the problem that GPS has a
lack of integrity. These services are processing the GPS data and calculate some
correction signals. This signals can be received for example from the Wide Area
Augmentation System (WAAS) or the European Geostationary Navigation Overlay
Service (EGNOS). Some commercial systems are StarFire and OmniSTAR which
provide different correction qualities at different costs. The errors that are corrected
are for example some deflections in the atmosphere which depend on the weather
and can be calculated because the position of the receiver is already known exactly.
A problem that cannot be solved with this method is the so-called Manhattan effect.

43

4 Theoretical background

Figure 4.3: A GPS receiver on the earth’s surface receives the signal from three GPS
satellites and based on the send time the distances r1 ,r2 and r3 can be calculated. In turn
this information are sufficient to calculate GPS receivers position.

Streets in big cities naturally are surrounded by large buildings. These houses prevent
the direct reception of a signal and instead reflections are picked up. The signal
run time of reflections is obviously longer and so the calculated position is wrong.
Addressed to this the position that is shown to the user is a combination of more
then one measurement. The wrong signals are permanently reflected differently and
thus have various running times. If a runtime occurs frequently, it is very likely the
non-reflected signal. To support this sometimes several antennas are installed.

4.3 Quality of a map

Maps in this work describe simple point clouds derived from Laser Range Finder
(LRF) readings. To better describe the quality of a map in this context the terms
accuracy and detail are used.

accuracy describes how close a point representing a measurement of the LRF is
placed at the position in the map where the measured object is in reality. This
also includes distances and orientations between multiple points. The closer
a point is to the position of the measured object, the higher is the accuracy.

44

4.4 Calculation complexity

The accuracy highly depends on the error of the sensor and the correction of
movements while the sensor was measuring.

detail describes the number of measurements per surface area of objects. The more
measurements are made on the same surface area of an object, the more features
of this object are discernible and distinguishable. Detail basically refers to the
point density of a point cloud.

Another very important aspect of mapping is the computation complexity, because
the runtime of the mapping algorithms depends directly on it. Although for the
3D-HTRF project a calculation time of several days would be tolerable since scouting
takes up to seven or ten days, saved calculation time can be spent on more precise
algorithms.

4.4 Calculation complexity

Mapping methods for robots can be classified by many different criteria. The following
four criteria are often used in the field of mapping and have a strong influence on
the calculation complexity of mapping algorithms.

indoor vs. outdoor (e.g. [LSNH04]) Indoor as opposed to outdoor environments
allow many assumptions which simplify a lot of robotic tasks. In indoor
environments like office buildings, homes, factory buildings etc. the floor is
generally flat and walls are straight vertically. For most projects so far the
above assumptions were sufficient and a two dimensional representation of
such areas was enough for most navigational and other robotic tasks. The
robot does not need to know of the height of the ceiling or its own pitch angle
because those variables never change.

On the contrary, in outdoor environments the floor often is uneven and thus a
robot needs to be aware of its full pose and relative to that the positions of its
sensors to properly make sense of its sensor readings. Outdoor environments
often require three dimensional mapping and navigation. Also a lot of objects
are moving, e.g. cars and people, or constantly changing like plant leafs in the
wind, which demands algorithms capable of working with changing foreground
and probabilistic movement of objects.

Outdoor environments tend to be larger and not to have distinct borders
compared to indoor environments which usually are restricted to the inside
of one particular building. It has not only to be resistant to dirt and water
but because of this larger environment the range of the sensor has to be larger.
Mostly in outdoor surroundings the noise is larger and changes because there
are more external influences that are not constant. For example working with
cameras is more complicated because the quality of the pictures depend on the

45

4 Theoretical background

weather. When the sun is shining there could be big shadow or it is cloudy
and less colors are recognized. Sensors that are not passive like laser scanners
have an advantage here.

2D vs. 3D Naturally three dimensional mapping algorithms do require more sensory
input than two dimensional ones and thus need more processing power. The
mathematical background of most algorithms can be adjusted by extending the
corresponding formula by another spatial dimension. Occasionally algorithms
are designed specifically for two dimensional problems only and require a major
overhaul to adjust them to 3D.

When working in outdoor environments using three dimensions is often required
because in most cases the important assumption to have a flat floor for 2D
processing is not given anymore.

The dimensionality of a map is not the same as the dimensionality of the
mapping or localization problem to solve with the map. This depends on
the degrees of freedom (DoF). A 2D problem usually has three DoF: a two
dimensional position (x, y) and a rotation θ. For three dimensions this increases
to six DoF which are (x, y, z)-coordinate and three angles for the orientation
in space (ρ, θ, φ) referred to as yaw, pitch and roll. Combinations of 2D pose
and 3D sensor input or the other way around are also possible, but this work’s
subject is the full six DoF problem. With every DoF the calculation complexity
grows exponentially [BEL+08].

size of area to map The larger the generated maps get, the more memory and com-
puting time is needed to store them and to add new measurements. Depending
on the size of the maps they can contain different levels of detail starting from
sparse maps only containing landmarks up to dense surface information. The
operations of adding new measurements and retrieving information for e.g. loop
closing restrict how large a map can grow if the computational complexity is
too large [Kon04].

online vs. offline Online means that the mapping is done incrementally based on
the prior sensor readings and in real-time. Such algorithms are needed when
the robot has to make decisions based on its current situation and sensor
readings, e.g. exploring an unknown territory. Offline methods are those which
need all collected sensory data right from the beginning to create a map or
are computationally so expensive that it is not possible to finish calculations
before the next measurements are taken [GRS+08].

As a basis on which to adopt the FastSLAM algorithm, the 3D-HTRF project’s
existing hardware, software and its inner workings, capabilities and limits need to be
explored and evaluated. For this reason an experiment has been conducted.

46

4.5 Relaxation

Figure 4.4: Relaxation computed out of the states sk+1, sk−1 and the odometry data uk,
uk−1 a new position for sk by building the center between the estimated position

4.5 Relaxation

Sometimes it seems that the trajectory is not smooth enough. It contains jumps that
cannot be executed under normal circumstances by the vehicle. These occur in the
system, if a measured GPS position is not equivalent to the approximate position
that was calculated with help of the odometry data. This happens when the INS
only trusts the GPS position and disregards the position calculated with the help of
the IMU or when the track without a GPS receive was too long and the errors of
odometry have accumulated too much. Then even a slower adaptation as done by a
Kalman filter is clearly visible (see Discussion 6.4). Another reason for an uneven
trajectory in the context of SLAM could be Loop-Closing (see 3.9.1). When doing
Loop-Closing a completely new position is set as current position and there is no
causal connection to its previous position anymore. To compensate for this and
get a smooth trajectory and therefore a smooth map, there is an algorithm called
relaxation.

Relaxation is based on the idea that each point of the trajectory has to be somewhere
where it is supposed by its previous (sk−1) and where its successor (sk+1) suspects
it came from. So the algorithm calculates with the help of uk and uk−1 this two
positions for sk and computes the euclidean center.

sk =
1

2
· [(sk−1 + uk−1) + (sk+1 − uk)] (4.4)

A graphical illustration can be seen in fig. 4.4. When doing relaxation this relaxation
step must be run multiple times. How many times it has to be done depends on the
quantity of the jump that has to be smoothened. Also the number of points that
should be used to get a good result has to be adjusted to the size of the jump.

47

4 Theoretical background

4.6 Landmarks

When doing localization landmarks are very important. The recognition and if
possible identification of such elements are the basic for SLAM algorithms because
they are needed as corresponding points to match the point clouds. A landmark
in its original meaning is a place or object that can be used for orientation. The
requirements for a good landmark are an easy recognition from many direction and
a unique identification so that they can be used as corresponding points. Landmarks
used in the context of SLAM are either artificial ones which mostly meet the
definition or they are automatically generated. Most types of the latter do not fully
meet the requirements. Especially a unique identification is usually not given, but
with the knowledge about the movement there is a good chance to find the same
landmarks again in the new sensor data. The generation of several landmarks and
their relationship to each other can be used for matching. Another distinction of
landmarks can be made if they are active or passive.

Artificial landmarks

Artificial landmarks are human made objects, which mostly are visible over long
distances and can be identified. The most obvious examples are lighthouses. Their
light is observable for ships over 20 km and more. Each Lighthouse has its own
light characteristic which is listed in every nautical map. In the context of SLAM
artificial landmarks are only used in very limited areas like the robocup as shown in
fig. 4.5. Typically on streets the landmarks are signs with the number or name of a
street and for bigger roads there are street signs that represent milestones, which
both together is sufficient for a global localization. Unfortunately the laser scanners
of 3D-HTRF look straight left and right. So the laser cannot see the fronts of the
street signs. The front of a street sign is mostly made of a material which reflects
light very good so that they would have a large echo pulse width. But even if we
could recognize the street signs there is no way to read them.

Automatically generated landmarks

Automatically generated landmarks are characteristics of the measurement data.
When using a 2D laser scanner there is a quite simple way to extract landmarks of
borders of the foreground that masked something in the background (see sect. 6.1.3).
This algorithm works quite good for indoor scenarios where the ground is flat and
horizontal and every wall is vertical. For outdoor environments the elevation of the
ground changes often and so the scanning beams hit the ground, or when hitting a
mound a little bit higher or lower, the measured range varies a lot.

To avoid such problems one can work in 3D space. Of course this increases the
complexity but to get undistorted 3D maps one needs to take care of all three

48

4.6 Landmarks

Figure 4.5: A robocup field with some artificial landmarks at the border of the field.
Each landmark has its own color code for its identification

dimensions and even of all three directions of the vehicle with the scanners and
therefore there is no way to avoid 3D landmarks. Extraction of 3D landmarks is far
more difficult than in 2D, because the next points in line are not known in the third
dimension. But the basic concept is the same: Find a Point which is not on a plane
formed by four of its neighbors.

If there is some extra information it can be used, too. In our case the laser scanners
provide a information called Echo pulse width. Extract the planes with the same
value and find the corners of these plains by using for example a bounding cube (a
bounding box in 3D). The Echo pulse width and the found planes can be combined
and for example a landmark can be set on a border line of a 3D plane at the point
where the value of the Echo pulse width changes.

Normally when using camera data the only information available is the color. Some-
times you known the size of an object and can guess the range to this object but when
generating landmarks with help of the bounding box we only know the direction.
Therefore the calculation of the correct landmark position is hard.

Active and passive landmarks

If a landmark is active or passive depends on if the landmark sends out a signal on
its own or not. The lighthouse used as an example of as an artificial landmark in
section 4.6 is an active landmark because it sends out a light signal all the time.
The landmarks of the robocup field are passive. They have to be recognized by the
players and the color code have to be extracted. Passive artificial landmarks for laser

49

4 Theoretical background

Figure 4.6: A SICK laser scanner and a reflector-mark installed on a table leg for an
easily recognition

scanners are reflectors which have a significant higher reflection which can be easily
found in the measurements (see fig. 4.6).

Non artificial active landmarks are very rare and of course they do not really send
out an identification signal. They are very special natural phenomena. This could
be in the astronomical context a pulsar which is a star which shows a regular flicker
at the night sky. Another example could be the magnetic north and south pole. A
dissertation which addresses the classification of landmarks is written by Joachim
Jotzo [Jot01].

4.7 FastSLAM

As pointed out in the State of the Art (see sect. 3.7) FastSLAM is a two-step
algorithm using a particle filter for the position updates and a Kalman filter for the
landmark updates. In this section we explain how exactly an ideal FastSLAM version
1.0 update step works for one observation each time step and how it can be adapted
to work in three-dimensional environments. The variable names used (tbl. 4.1) are
the same ones Montemerlo and Thrun use in their FastSLAM book [MTS07].

The algorithm starts with the particle set from the previous step in time St−1, the
current observation zt made by the vehicles sensor and the current vehicle control
ut. The vehicle measurement noise Rt usually does not change. For the first run a
particle which holds the position (0,0) and and no landmarks can be added to the
set of particles St−1 to initialize the algorithm.

50

4.7 FastSLAM

St particle set at time t
zt sensor observation at time t
Rt linearized vehicle measurement noise
ut robot control at time t
M Total number of particles
N Total number of landmarks

µ
[m]
n,t ,Σ

[m]
n,t n-th landmark EKF (mean, covariance) in the m-th particle

θnt angle from the vehicle to the nt-th landmark
g (st, θnt) measurement function
Gθ Jacobian of measurement model with respect to landmark pose
ẑnt expected measurement of nt-th landmark
zt − ẑnt measurement innovation
Zt innovation covariance matrix
Kt Kalman gain

w
[m]
t importance weight of the m-th particle

Table 4.1: Variable names and their meanings as described by Montemerlo and Thrun.
For this work the same conventions are used.

FastSLAM(St−1, zt, Rt, ut)
St = Saux = ∅

Every particle is processed the same way in FastSLAM, so the main part of the
algorithm is a for-loop going through all particles.

4.7.1 Particle

The m-th particle is defined as a combination of the complete path st up to the
current vehicle pose at time t of this particle and a list of all N landmarks associated
with it:

S
[m]
t =

〈
st,[m], µ

[m]
1,t ,Σ

[m]
1,t , . . . , µ

[m]
N,t,Σ

[m]
N,t

〉
(4.5)

Processing the m-th particle starts with drawing a sample from it after selecting it.

for m = 1 to M
retrieve m-th particle // loop: all particles〈

s
[m]
t−1, N

[m]
t−1, µ

[m]
1,t−1,Σ

[m]
1,t−1, . . . , µ

[m]

N
[m]
t−1,t−1

,Σ
[m]

N
[m]
t−1,t−1

〉
from St−1

draw s
[m]
t ∼ p

(
st
∣∣s[m]
t−1, ut

)
// sample new pose

A sample is a probabilistic prediction of the vehicle position of a particle.

51

4 Theoretical background

4.7.2 Predicted particle pose

A predicted pose is a possible pose of the vehicle in a particle. This pose is estimated
from the old pose saved in the particle and a movement vector (control ut). The
movement vector is the difference between the last two odometry poses transformed
to polar coordinate system with the old vehicle pose as origin and the alignment as
x-axis. The transformation is necessary because each particle has its own alignment
and this is the start alignment of the movement vector. After calculating the new
pose the new alignment has to be adapted. Each angle is the old one from the
particle plus the relative one from the odometry data. The movement vector as well
as the relative angles are measurements and interpreted as normal function. The
used values are produced from the corresponding function with the help of a random
generator (see sect. 5.4.6). The variance of this function depends on the used system,
is usually unknown and has to be experimentally determined. This is done in [Eis02].
The variances necessary for moving in three-dimensional space are listed in tbl. 4.2.

αyaw1 variance of the yaw angle of the movement vector
αpitch1 variance of the pitch angle of the movement vector
αtrans variance of the magnitude of the movement vector
αyaw2 variance of the relative yaw angle
αpitch2 variance of the relative pitch angle
αroll variance of the relative roll angle

Table 4.2: The variances for a 3D motion model.

After the particle has been adjusted for the vehicle movement a for-loop goes over
all landmarks saved in the particle.

Montemerlo and Thrun do not delve into how to detect landmarks and assume
landmark detection to work. This is justified because the landmark detection is
highly depending on the type of sensor data and the FastSLAM description is
supposed to be as independent from the type of sensor as possible. So the landmark
detection is an individual part of every implementation and will not be handled any
further in this chapter, but in the following chapter (see sect. 5.3.2).

4.7.3 Observation

An observation is a landmark found in the sensor data. Those observations get
classified either as a new observation or as a match with a known and saved landmark.
If an observation is regarded as a previously unseen, new landmark it will be saved
for future processing. Otherwise it is considered a repeated detection of a previous
landmark it got associated with. In this case the information of the observation is

52

4.7 FastSLAM

x

y

z

αtrans

αyaw1

αpitch1

αyaw2

αpitch2

αroll

Figure 4.7: An extension of the FastSLAM motion model from 2D to 3D. Additionally
to the αyaw1, αtrans and αyaw2 parameters, αpitch1, αpitch2 and αroll are added.

used to either update the robot pose, the position of the landmark it got associated
with or both.

4.7.4 Landmark associations

The landmark association is a difficult problem. As long as no other features of the
landmark are known the association can only be done by its locality. On how to
detect identifiable features, take a look in sect. 7.2.1. The simplest method to find
the right association between landmarks and observations is to take the observation
and landmark with the smallest distance. Generally the choice of the metric is left
to the developer. Of course the most common one is the Euclidean distance, but,
e.g. to improve the performance, one can use the Manhattan distance if one is not
affected by its disadvantages. In our case we decided to use a proposal from the
book “Probabilistic Robotics” [TBF05] and use the maximum likelihood metric for
the landmark association, which just associates the observation with the landmark
with the highest likelihood value. This is illustrated in fig. 4.8 where the likelihood
of Landmark 2 is larger. Another approach is to interpret the likelihood values as a
probabilistic distribution so that the landmark to associate an observation with is
randomly selected based on this distribution.

53

4 Theoretical background

Figure 4.8: An ambiguous data association which could be solved in favor of landmark 2 by
the calculation of the likelihood. The landmarks are diagrammed by a ellipsoid represents
its probability distribution.

4.7.5 Likelihood

Likelihood is a term used in probability theory. It is used for example in the maximum
likelihood estimation which estimates the parameters of a distribution only based on
the measurements. The likelihood itself is the probability of the given measurement
when the distribution has a certain parameter. The likelihood function has the
distributions as domain and the probabilities as image but these are not normalized.

In our case the likelihood calculation is just one value because our landmark model
already sets the mean and the covariance but there are more than one possible
landmark for a observation. So we have to calculate the likelihood for each landmark
with the help of the probability density function which is a multivariate normal
distribution and describes the probability that the observation is a random value of
the landmark and its noise.

p
[m]
n,t =

1

(2π)
p
2 |Zn,t|

1
2

exp

{
−1

2

(
zt − ẑn,t)T

)
Z−1n,t (zt − ẑn,t)

}
(4.6)

p denotes the dimension of the distribution, which is 3 in case of this thesis.

The likelihoods of all possible landmark associations are calculated and then the
landmark with the highest likelihood is associated with the current observation zt.
This association is called nt.

Likelihood values are also useful for deciding if the current observation is a new
landmark. If the likelihood values of all landmark associations are below an empirically
determined threshold value the observation is considered more likely to be of a new

54

4.7 FastSLAM

landmark instead of being associated with a previously observed landmark. In this
case a new landmark is created and stored in the current particle like this:

µ
[m]
n̂t,t

= g−1
(
s
[m]
t , ẑn̂t,t

)
Σ

[m]
n̂t,t

=
(
GT
θ,n̂t

R−1Gθ,n̂t

)−1
In the other case, when a landmark association exists, the landmark position gets
updated. An extended Kalman filter is used to find the most likely position and
covariance of the landmark factoring in its previous position and covariance and the
associated, new observation including its covariance.

4.7.6 Extended Kalman filter

An observation received as sensor data from a Laser Range Finder is a point in
spheric coordinate space, described by a horizontal and a vertical angle and a distance
with the sensor being the coordinate system’s origin. Conversely the maps built are
described in Cartesian coordinates with a global origin.

In the context of this thesis the Jacobian Matrix is used to transform coordinates
from the spheric coordinate system of the vehicle’s sensor to the cartesian coordinate
system of the map and back again.

Jacobian Matrix

The Jacobian Matrix is a matrix of all first-order partial derivatives of a vector
function. It describes the orientation of a tangent plane on this function and thus
represents a the best linear approximation of the function at a given point. The
Jacobian Matrix is the important extension to a Kalman filter which makes it an
extended Kalman filter.

The advantage of a Jacobian Matrix over simply transforming all coordinates ac-
cordingly is that it can be used in matrix calculations and allows for an convenient,
efficient and save implementation.

Since this work is handling FastSLAM in 3D instead of 2D as the original formulation
of the algorithm, this section describes an extension of the Jacobian Matrix to
three-dimensional space.

To simplify the following formulas these definitions are used for x, y and z:

x = θx − st,x ; y = θy − st,y ; z = θz − st,z

55

4 Theoretical background

g is the measurement function which describes the coordinate transformation from
spheric coordinate space to Cartesian coordinate space.

g(st, θnt) =

 ρ
θ
φ

 =

√
x2 + y2 + z2

arccos

(
z√

x2+y2+z2

)
arctan

(
y
x

)
− st,θ

 (4.7)

Based on aboves measurement function the partial derivations of its components
yield this Jacobian Matrix:

J =

x√

x2+y2+z2
y√

x2+y2+z2
z√

x2+y2+z2

− y
x2+y2

x
x2+y2

0
x·z√

x2+y2·(x2+y2+z2)
y·z√

x2+y2·(x2+y2+z2)
− x2+y2

x2+y2+z2

 (4.8)

This Jacobian Matrix is an integral part of the extended Kalman filter and needed
for Covariance Matrices, Innovation Matrices and the Kalman Gain for updating
landmark positions.

Covariance Matrix

With the help of the Jacobian matrix and the knowledge of the errors of the scanner,
that are given in angle errors and distance error, the covariance matrix can be
calculated by the extended Kalman filter.

The covariance is a term of probability theory showing how much two or more random
variables change together. The definition of the covariance is

Cov(X, Y) := E
(
(X − E(X))(Y − E(Y))

)
(4.9)

where X and Y are random variables and the E(X) is the expected value of X. Each
value thus represents the link between the different variables. This dependence is
commutative. So the values over the diagonal correspond to those under it. The
interpretation of the diagonal itself is simple. These values represent the variance σ
of the probability distribution to its random variable.

When working with FastSLAM every landmark in the map has a covariance. The
covariance represents the belief in the accuracy of the calculated position. Each
time the landmark is detected the belief increases and the covariances decrease. An
observation has always the same covariance given by the measurement inaccuracies
of the system. This is given by the measurement noise matrix Rt.

56

4.7 FastSLAM

Kalman Update

Using the same measurement function g(st, θnt) the Jacobian Matrix is based on
(sect. 4.7.6) the current observation zt is transformed to the expected observation’s
position ẑt

ẑt = g(st, µnt,t−1) (4.10)

Using the Jacobian Matrix Gθnt
the Innovation Covariance Matrix Zn,t can be

calculated

Zn,t = Gθnt
Σnt,t−1G

T
θnt

+Rt (4.11)

which in return is used to calculate the Kalman Gain Kt

Kt = Σnt,t−1G
T
θnt
Z−1n,t (4.12)

The difference between the observation and its expected position zt − ẑt is called
Innovation. The Kalman Gain Kt describes how much of the innovation is most likely
gained according to the extended Kalman filter with the given vehicle measurement
noise Rt. This leads to the updated landmark position µnt, t

µnt,t = µnt,t−1 +Kt(zt − ẑt) (4.13)

The update for the landmark’s covariance Σnt,t works similar

Σnt,t =
(
I −KtGθnt

)
Σnt,t−1 (4.14)

All the updated landmarks (µnt,t,Σnt,t) are saved in the particle they belong to
for the next round of FastSLAM. This concludes the Kalman Update step of the
algorithm and the updated particles are rated.

4.7.7 Particle Filter

The particle filter is the part of the FastSLAM algorithm that enables it to follow
multiple hypotheses at the same time and avoid deciding on one hypothesis only.
Each particle is processed in the above described manner independently and holds a
vehicle pose and a complete map. Then all particles get rated and the good ones are
kept and the bad ones are removed.

57

4 Theoretical background

Importance Weights

This step is a critical correction step in the FastSLAM algorithm. After sampling new
poses for particles in the beginning of the algorithm (see sect. 4.7.2), the particles
are not distributed according to the desired distribution. This is because the particle
poses st are sampled based on the latest control information ut, but are missing
the latest observations zt and their landmark associations nt at this point. So the
posterior sampled from is p(st|zt−1, ut, nt−1) instead of the desired p(st|zt, ut, nt)
including the latest information available.

The particle’s proposal distribution after sampling new poses is a Gaussian due to the
way the particles poses are predicted from the control information. But the target
distribution is determined by the observations and the landmark associations and thus
can be arbitrary. The importance weights are higher for particles in regions where
the target distribution is larger than the Gaussian proposal distribution and vice
versa, so the importance weights of the particles approximate the target distribution.

To calculate an importance weight w
[m]
t we start with the proposal and the target

distribution:

w
[m]
t =

targetdistribution

proposaldistribution
(4.15)

=
p(st|zt, ut, nt)

p(st|zt−1, ut, nt−1)
(4.16)

Using Bayes’ theorem

P (A|B) =
P (B|A) · P (A)

P (B)
(4.17)

but dropping the normalization constant P (B) because the importance weights are
normalized in a separate normalization step, above formula can be rearranged to

w
[m]
t ∝ p(zt|st, zt−1, ut, nt) · p(st−1|zt, ut, nt)

p(st|zt−1, ut, nt−1)
(4.18)

Since the particle filter is a Markov process (compare sect. 3.6) and thus the latest
association nt depends on the current observation zt, which is not part of the right
hand term in the numerator, nt can be dropped from it.

w
[m]
t =

p(zt|st, zt−1, ut, nt) · p(st−1|zt, ut, nt−1)
p(st|zt−1, ut, nt−1)

(4.19)

= p(zt|st, zt−1, ut, nt) (4.20)

58

4.8 Summary

This means the importance weight is equal to the likelihood of the current observation
under the current information of control, previous observations, trajectory and
landmark associations.

To extend this definition for more than one observation in Thrun’s book “Probabilistic
Robotics” [TBF05] the likelihoods of all landmark associations are simply multiplied
with each others.

Resampling

Based on the importance weights assigned to the particles, in the resampling step
the best particles are chosen and duplicated several times. At the same time the
worst rated particles are discarded to keep the total number of particles stable.

Montemerlo and Thrun in their book [MTS07] did not specify which method to use
for the resampling step. The important aspect to take make sure of when selecting a
suitable algorithm is to sample the particles proportional to the importance weights.
However the reader is advised to Madow’s systematic sampling algorithm which is
used in the implementation (see sect. 5.4.5).

This concludes a run of the FastSLAM algorithm. As soon as all necessary data
(vehicle control and observation) is available again the next round of the FastSLAM
algorithm can be started.

4.8 Summary

Laser Range Finders are Lidar devices which work with laser beams close to the
visible spectrum of light. This is advantageous because the measurements are similar
to a human understanding. The different techniques of time-of-flight and phase-shift
allow for precise measurements of close by as well as far away objects.

With the help of an Inertial Navigation System the global pose and movement of a
vehicle can be determined quite precisely due to a combination of sensors measuring
the vehicle movement and the Global Positioning System. The different information
sources are joined with probabilistic methods to calculate the position with the
highest probability.

When an INS has no GPS signal for a longer while like in a tunnel, it has to solely rely
on its dead-reckoning capabilities. Since errors add up and cannot be corrected with
this technique the pose estimation goes worse over time and when a new GPS pose
is retrieved the INS tend to do very abrupt corrections. Relaxation was explained
and introduced to smoothen out such errors.

Landmarks are the basis for most matching algorithms which is why a section of this
chapter explained what landmarks are and how they can be classified.

59

4 Theoretical background

With the basic understanding how the FastSLAM algorithm works one can implement
it. Although the theoretical description by Thrun leaves some points open and for
the reader to decide, the base frame is outlined clearly. In the next chapter a full
FastSLAM 1.0 algorithm is implemented and the algorithms used to complement
the base frame given by Thrun are explained in detail.

60

Implementation

5
With the knowledge about the base frame of the FastSLAM algorithm from the
previous chapter an implementation was written. Many changes had to be made to
adapt the algorithm for the 3D-HTRF project and fill in the open issues not covered
by the general description of FastSLAM. Because several components interact to
form the whole 3D-HTRF system, this chapter starts with an introduction of the
different coordinate systems used by the components.

5.1 Coordinate Systems

All the components of the system, built as part of this thesis, deal with points
and angles in three-dimensional coordinate systems, but many different coordinate
systems are involved. This section gives an overview which coordinate systems these
are and why they are used in which component.

The most important aspect of the different coordinate systems used is the orientation
of the axes. Unfortunately all components using Cartesian coordinates use different
axes and need a conversion. Starting from the East-North-Up coordinates provided
by the INSs, over the AppBase down to the OpenGL engine used for displaying the
maps in the end. Additionally the angles for describing a vehicle orientation in space
are defined differently as well.

5.1.1 World Geodetic System 1984 (WGS84)

WGS84 is the reference coordinate system used for GPS. It models an ellipsoid
representing the earth’s surface with its origin in the mass center of the earth.
Positions on the surface are given by longitude and latitude in degree and minutes.
This coordinate system was developed by the United States Department of Defense
beginning in the 1950s and consequently updated since then using data about the
shape and density of earth as it became available (see e.g. [Sep74] or [MSWS02]).
Since it is the reference coordinate system of the GPS system the raw position
data from the INSs is provided in degree and minutes of latitude and longitude and

61

5 Implementation

altitude in meters. For ease of implementation and interpreting data the 3D-HTRF
project benefits from using a Cartesian coordinate system based on a flat plane
instead of a ellipsoid, though. For this reason the AppBase transparently converts
the WGS84 coordinates to East-North-Up coordinates.

East-North-Up (ENU)

East-North-Up is the most intuitive coordinate system. It is formed by placing a
tangent plane at earth’s surface, fixed to a specific location, being the ENU’s origin.
This is why ENU sometimes is called “Local Tangent” or “Local Geodetic”. The axes
then correspond to the AppBase’s implementation of the standard map with north
pointing up, which is the y-axis and east pointing to the right, which corresponds to
the x-axis. The z-axis is pointing up from earth’s center, which also is equal to the
general use.

For the purposes of the 3D-HTRF project, especially the local accuracy (compare
sect. 1.1), ENU is sufficient and tremendously simplifies working with global coordi-
nates. The AppBase sets the coordinate origin at the position of the vehicle when
the system is turned on. This way only changes in the position have to be considered
and all data can be handled the same way independently on where on earth’s surface
it was collected.

Although the coordinate systems of the AppBase and the data coming from the
INSs are the same, the angles used to describe the vehicle’s orientation are different.
The data coming from the INSs must be corrected by turning the yaw-angle by 90°,
respectively π

2
radians, because a yaw-angle of 0 is rotated between the AppBase and

the INSs.

1 MountingPosition SliceWorker::getRelativeMountingPositionWGS(PositionWGS84 currentWGS84,

PositionWGS84 originWGS84)

2 {

3 Point3D currentRelWGS84;

4 MountingPosition vehicleMountingPosition;

5

6 currentRelWGS84 = currentWGS84.getCartesianRelPos(originWGS84);

7 currentRelWGS84.rotateAroundZ(-originWGS84.getYawAngleInRad()-ibeo::PI_double/2);

8 currentRelWGS84.rotateAroundY(-originWGS84.getPitchAngleInRad());

9 currentRelWGS84.rotateAroundX(-originWGS84.getRollAngleInRad());

10 vehicleMountingPosition = MountingPosition(currentWGS84.getYawAngleInRad()-originWGS84.

getYawAngleInRad(),currentWGS84.getPitchAngleInRad()-originWGS84.getPitchAngleInRad(),

currentWGS84.getRollAngleInRad()-originWGS84.getRollAngleInRad(),currentRelWGS84.getX(),

currentRelWGS84.getY(),currentRelWGS84.getZ());

11

12 return vehicleMountingPosition;

13 }

See line 7 for correcting the yaw-angle by π
2

radians.

62

5.2 Program layout

OpenGL coordinate system

OpenGL is an API for describing 3D graphics and is used for displaying point clouds.
The coordinate system used in OpenGL is again different from the AppBase and
INSs. The x-axis is pointing east, the y-axis upwards and the z-axis south, looking
at the user in front of a computer. This makes several translations necessary.

1 sscanf(line.c_str(), "%f %f %f %f %f %f", &X, &Y, &Z, &R, &G, &B);

2

3 ScanPointCoord[i]=X;

4 ScanPointCoord[i+1]=Z;

5 ScanPointCoord[i+2]=-Y;

6

7 ScanPointColor[i]=R;

8 ScanPointColor[i+1]=G;

9 ScanPointColor[i+2]=B;

The z- and y-axis are switched around (lines 4 and 5) and the direction of the z-axis
is inversed (line 5).

Since no orientation is modeled within the OpenGL parts of the software, the
corrections for angles can be dropped.

5.2 Program layout

The AppBase is a closed source framework by SICK AG and used for processing
data from different sources through units called workers. Workers can be connected
by paths which transport certain types of data from and to the workers. Data is
emitted at a source object and transmitted along the paths until it is sent to the
drain object. The path used for this thesis can be seen in figure 5.1. When the
AppBase is done sending the data from the source, it starts shutting down all of its
components. This very serial processing paradigm leads to a problem when trying to
implement FastSLAM within the AppBase. Particle weights in FastSLAM might
change later on and later data might suggest a different hypothesis than before,
which is exactly what FastSLAM is supposed to do. The best solution would be
to add a routine to the destructors of the workers to tell them to write out their
data now. Unfortunately this does not work with the AppBase because the order
in which the destructors are called is not predictable. If the current state of the
FastSLAM processing is forwarded continuously, as a serial design would assume,
changing to a different hypothesis is only possible for the following scans, but not
the ones already forwarded. The only feasible way to circumvent this is to write
out all data up to the current state in regular intervals. In the worst case the data
of a complete interval is lost in the end because it did not get written out before
the AppBase shut down. Just making the input data a little longer than actually
needed makes this data loss irrelevant. Since the data sent to the AppBase drain is
written to a binary stream format which would require postprocessing to separate

63

5 Implementation

the different FastSLAM stages again, the data is written directly to the harddrive by
the FastSLAM worker, circumventing the AppBase mechanisms.

5.2.1 AppBase configuration

A XML configuration file describes which workers to use and how the data flows
between them. The XML configuration file used for this work is schematically
represented by the flowchart of fig. 5.1 and can be found in Appendix B.

Figure 5.1: This flowchart shows the layout of the implemented AppBase workers and
the data paths between them. For output purposes the data is routed along the grey
paths, but this does not have any impact on the FastSLAM algorithm. The OFF output is
implemented within the FastSLAM worker, but shown here for completeness. VSB stands
for VehicleStateBasic which is an object of the AppBase API holding the dead-reckoning
data from the car’s CAN-bus, while WGS84 objects hold the position data from the INSs
in longitude and latitude format.

The names on the arrows are data types used in the AppBase.

5.2.2 AppBase data types

These data types are mostly list objects with some limitations which makes it
sometimes hard to work with them.

Scan A Scan object holds all information of a scan sweep of all LRFs. This includes
a complete list of all scan points, IDs to tell the LRFs apart and the mounting

64

5.2 Program layout

position of the LRFs. The maximum number of ScanPoints a Scan can hold is
65,536.

ScanPoint A single measurement from an LRF. Most importantly this object has a
position (in AppBase terms a ‘point’), an echo pulse width and an ID which
tells which LRF it was measured with.

PositionWGS84 These objects are a encapsulation of a 3D pose (in AppBase terms
a ‘position’), this is a position and an orientation in three-dimensional space.

VehicleStateBasic VSB objects are similar to PositionWGS84 objects as they too
contain position information, but the positions in these objects are not retrieved
from an INS. The position and orientation data in these objects are calculated
through dead-reckoning with the odometry provided by the motion sensors
connected to the cars CAN-bus.

These objects are only saved in a serialized binary format by the AppBase. To get
the information in those objects part of the SLAMWorker takes care of writing it
out in the Object File Format.

5.2.3 Object File Format (OFF)

The Geomview Object File Format1 is a very simple ASCII file format. All we use
from the specifications is the definition of vertices and colors, although the colors are
only for visual appearance. An OFF file has a header containing the word ‘OFF’ in
the first line and the number of vertices, faces and edges on the second line, separated
by spaces. Each line then describes a vertex with its X, Y and Z coordinates and its
color in RGBA floatingpoint values from 0 to 1 (e.g. like in tbl. 5.1).

1 OFF

2 2 0 0

3 10.0 20.0 30.0 1.0 0.0 0.0 1.0

4 -1.0 50.0 50.0 0.0 1.0 0.0 0.5

Table 5.1: An OFF file describing two points. The first point is at (10, 20, 30) and solid
red. The second point is at (-1, 50, 50) and 50% transparent green.

5.2.4 OFF file viewer

In order to watch the OFF files a viewer is needed. No suitable software was found
and thus a minimal viewer using OpenGL was implemented.

1http://people.sc.fsu.edu/~jburkardt/data/off/off.html (May 9, 2011)

65

http://people.sc.fsu.edu/~jburkardt/data/off/off.html

5 Implementation

The basic idea is to read the OFF file line by line and toss out the two header
lines. Then every following line is a vertex which needs only to be split up into its
components and assigned to the corresponding variables.

Two arrays represent the points. ScanPointCoord holds the X, Y and Z coordinates
consecutively and ScanPointColor holds the RGB portion of the color information
consecutively (tbl. 5.2). The transparency information A as specified in the OFF
definition (sect. 5.2.3) does not have any correspondence to scan point information
and thus has not been implemented.

1 std::ifstream in(file);

2 string line;

3

4 getline(in, line);

5 getline(in, line);

6

7 f loat X, Y, Z, R, G, B;

8 while (! in.eof())

9 {

10 getline(in, line);

11 sscanf(line.c_str(), "%f %f %f %f %f %f", &X, &Y, &Z, &R, &G, &B);

12

13 ScanPointCoord[i]=X;

14 ScanPointCoord[i+1]=Z; // adjust coordinate system to OpenGL
15 ScanPointCoord[i+2]=-Y; // adjust coordinate system to OpenGL
16

17 ScanPointColor[i]=R;

18 ScanPointColor[i+1]=G;

19 ScanPointColor[i+2]=B;

20 [...]

21 }

Table 5.2: Shortened method for reading an OFF file line by line. The Cartesian
coordinates and RGB color information is stored in arrays. Transparency information is
ignored.

5.3 Preprocessing

FastSLAM is a consuming process whose complexity grows with the number of
landmarks. Therefore, the number of landmarks is reduced by some preprocessing
steps. Because the echo pulse width is involved, recognizable landmarks should be
possible to produced. A further step of preprocessing is slicing. Slicing joins multiple
scans to a larger 3D point cloud to make them more useful for our 3D FastSlam
algorithm.

66

5.3 Preprocessing

5.3.1 Street border cutter

Most streets are used by a heavy transport are bigger ones which nearly always have
curbs or a kind of traffic barriers. Therefore the best way to detect the street surface
is to detect the different heights of the surface and the border. We first assume that
the ground the vehicle stands on is a part of a street. The scan points which are in
an area around zero height are cut out to avoid points which definitely not belong to
the ground, i.e. trees. Then they are sorted by the distance to the vehicle, separately
on each side. Then based on the first points next to the car a tangent is calculated
and used to determine the deviation of the next scan point to this tangent and to
decide if it belongs to the street or not. If it belongs to the street a new tangent is
calculated. This is necessary because most streets are build with a convex surface
to give the rain a chance to flow off the street. If the deviation is greater than a
given value it must be the border of the street or an object that blocked the view on
the roadside. In both cases we are not interested in the points that follow in this
direction and they will be ignored.

5.3.2 Street surface marking detector

Street markings are markings on the pavement of a street which signify and separate
the lanes to use by the drivers. They are made of a bright material to set them as
much apart as possible from the dark pavement and additionally they have some
special additives like light reflecting beads. This makes street surface markings
quite good objects to create landmarks from. They are found on almost all streets,
especially on the bigger ones on which a heavy transport mostly moves. The markings
can be easily recognized in the laser scanner data because of their light reflecting
materials. Of course this is primarily for better visibility for the human drivers of
the cars but this has also advantages for scanning with laser range finders. The
reflected laser pulse has a wide echo pulse width and the street surface itself has a low
reflectivity in the light spectrum of the Laser Range Finder. Therefore a significant
saltus is detectable when the laser beam crosses the border between the pavement
and the marking and the other way around. So we take a look on the difference of
the echo width of two neighboring points, which is almost the same as the calculation
of the first derivative, and cut out the points where the difference to the next point
is higher than a given value. This is true for the boundaries of the road markings as
can be seen in figure 5.2. The detected echo pulse width do not only depend on the
different physical properties of the reflecting object, but also on the angle at which
the object was hit and the distance the light traveled. This is why the derivative of
the echo pulse width will yield different values for the same objects depending on the
distance and orientation to the car’s Laser Range Finders. In general the echo pulse
width is dropping with the distance and a decreasing angle of incidence. Thus the
implementation can also calculate the second derivative which is more stable over

67

5 Implementation

distance and yields similar results for the same objects at different distances and
angles. For the most cases the interesting landmarks are found on the street’s surface
right beneath the car and thus it is configurable if the first or second derivative is
used.

1 for (std::vector<Scan>::iterator scanIt = allScans.begin(); scanIt != allScans.end(); ++scanIt)

2 {

3 // Vector containing the recent ScanPoints EchoWidths
4 std::vector<float > recentSPs;

5

6 // in i t ia l i ze iterator over current Scan object to f i l l
7 it = (*scanIt).begin();

8

9 // Add three Scanpoints to the recentSPs−vector to prepare for the
10 // following loop
11 for (int i=0; i<2; ++i)

12 {

13 recentSPs.push_back((*it).getEchoWidth());

14 ++it;

15 }

16

17 while(it != (*scanIt).end())

18 {

19 // Set the echoWidth to the magnified 2nd derivation
20 (it-2)->setEchoWidth(m_factor * fabs(recentSPs[0]-recentSPs[1]));

21

22 // iterate and move elements around in the recentSPs vector
23 ++it;

24 recentSPs.push_back((*it).getEchoWidth());

25 recentSPs.erase(recentSPs.begin());

26 }

27 // Delete the last two scanpoints in the result
28 (*scanIt).getPointList().erase((*scanIt).end()-2, (*scanIt).end());

29 outputScan.addScan(*scanIt);

30 }

The code is simplifying the position of the calculated derivative by putting it on the
position of the last scan point which went into the calculation. This is intentional
because the this will set a high value to the first scan point on the recognized object,
right after the saltus. The full code is in appendix C.2 and also shows the first
derivative and handling of the scan points.

Now what is stored in the Scan object are the derivatives of the Echo pulse width,
but they need to be interpreted to find the interesting features. This is done by the
Echo pulse width cutter.

5.3.3 Echo pulse width cutter

The resulting scans from the street surface marking detector contain the results of
the first or second derivative, depending on the configuration settings of the worker,
as the new echo pulse width value. The echo pulse width cutter (see appendix C.3)
simply removes all scan points below a certain threshold.

1 std::remove_copy_if(scan.begin(), scan.end(), std::back_inserter(limitedScans.getPointList()),

boost::bind(&spBetweenValues, _1, m_scanner1_min, m_scanner1_max, m_scanner2_min,

m_scanner2_max, m_scanner3_min, m_scanner3_max));

68

5.3 Preprocessing

All ScanPoint objects with an echo pulse width value not within the limits given by
the min and max values, are removed. The function spBetweenValues evaluates if
the conditions are met and returns an boolean indicating if the scan point should be
removed.

Figure 5.2: On the right hand side the original data with the echo pulse width represen-
tation as gray scale can be seen and on the left hand side the result of the street surface
marking detector followed by the echo pulse width cutter is shown.

5.3.4 Clustering

Using a clustering algorithm one can associate the feature points extracted by the
street surface marking detector. Due to the large sizes of the street surface markings,
they are usually cut off halfway in scan slices (see fig. 5.3). It makes more sense and
is easier to implement matching on the feature points of the street surface outlines
than trying to derive stable information from clusters which represent different parts
of the same object. For this reason no further processing of the feature points is
done, although a clustering worker was developed and tested, but then discarded.

5.3.5 Slicing

In the existing system one scan consists of one round-turn of the mirror in all three
scanners. The resulting scan points are joined together with the knowledge of the
mounting positions of the scanners. As a result we get two lines of points. One
consists of the data of the scanner on the back and the other of the data of the side
scanners. The side scanners are attached mirror-image and at right angles to the car
so that they are in the same plane. To fulfill the basic idea of the SLAM algorithm
we have to look for some landmarks in the scans and try to find them again in the

69

5 Implementation

Figure 5.3: The outlines of the street surface markings have been extracted and assigned
to clusters. Landmarks belonging to the same cluster have the same color.

new scans. To do so we decided to create some 3D point clouds that have a complete
plane of points on street surface. For this purpose we combine several scans and join
them together with consideration of the odometry of the vehicle to one new point
cloud. The joined scan is called a slice. To motivate the name you have to view it
the other way around and take the driving path and cut it into suitable slices. Cole
and Newman use a similar process they call ‘segmentation’ and explain in [CN06].

Because of the limits of the AppBase’s Scan object used in the implementation of the
slicing algorithm, there cannot be any slices containing more than 65,536 ScanPoints.
Since the number of ScanPoints is varying only a safe upper limit can be calculated.
If every LRF returns a maximum of 1,000 measurements every scan swipe we can
expect up to 60,000 ScanPoints to be combined within 20 scans of 3 LRFs. So, 20 is
a safe upper limit for combining scans.

Most scan swipes of the LRFs do return less than 1,000 measurements though and
scans of more than 20 scan swipes can be created. But the next limit being hit is
the ScannerInfo vector containing the information of all LRFs. A scan can hold no
more than 128 ScannerInfo objects and every scan swipe of each LRF adds a new

70

5.3 Preprocessing

Figure 5.4: This figure shows three differently colored slices. Each slice is a combination
of 20 scans of all three scanners and the slices have an overlap of eight scans. The overlap
of the yellow and green slices are masked by the next slice but one can see that blue slice
consist of 20 and masked slices of 20− 8 = 12 scans

ScannerInfo object. This leads to a maximum of 42 combined scan swipes of three
LRFs with a total 126 ScannerInfo objects.

As initialization step the first incoming position information is saved as origin position
of the slice. When a scan arrives the last position information is saved as current
position and the Mounting Position relative to the slice’s origin is calculated. It is
important that the relative Mounting Position vector has to be in the coordinate
system of the origin position. Also the orientation has to be relative to the orientation
of the origin position.

1 MountingPosition SliceWorker::getRelativeMountingPositionWGS(PositionWGS84 currentWGS84,

PositionWGS84 originWGS84)

2 {

3 Point3D currentRelWGS84;

4 MountingPosition vehicleMountingPosition;

5

6 currentRelWGS84 = currentWGS84.getCartesianRelPos(originWGS84);

7

8 // calculation of the orientation
9 currentRelWGS84.rotateAroundZ(-originWGS84.getYawAngleInRad()-ibeo::PI_double/2);

10 currentRelWGS84.rotateAroundY(-originWGS84.getPitchAngleInRad());

11 currentRelWGS84.rotateAroundX(-originWGS84.getRollAngleInRad());

12

13 vehicleMountingPosition = MountingPosition(

14 currentWGS84.getYawAngleInRad()-originWGS84.getYawAngleInRad(),

15 currentWGS84.getPitchAngleInRad()-originWGS84.getPitchAngleInRad(),

16 currentWGS84.getRollAngleInRad()-originWGS84.getRollAngleInRad(),

17 currentRelWGS84.getX(),

71

5 Implementation

18 currentRelWGS84.getY(),

19 currentRelWGS84.getZ());

20

21 return vehicleMountingPosition;

22 }

This relative Mounting Position is used to transform the scan data to the origin
position coordinate system and to add it to the slice. This is repeated until the slice
has the desired size. To start a new slice the next incoming position is saved as
origin position and the algorithm starts again.

A feature of the slicing is the parameter overlap. The parameter overlap is the
number of scans of the last slice that are used for the next slice, too. So when there
is a overlap > 0 the starting position and scan are not the first ones to come in,
instead they are the ones used as |overlap| last scans in the last slice. This feature
allows to create larger slices without increasing the distance between two scans but
some points are used twice (see sect. Discussion 6.1.2).

To implement the overlap feature all scans and position data are saved to a
boost::circular buffer. These are useful because when the first slice is finished we
want to keep the last incoming information for the next slice and delete the old. The
circular buffer has the same size as the slices should have, so that every time the
buffer is full a slice is finished.

5.4 FastSLAM

FastSLAM is a process which is initiated every time new observations are available
(see fig. 5.5). First some Particles are produced. Each particle has a pose which has
to be updated by a prediction. Based on the new pose the observations are matched
to the landmarks in the map of the particle. This is made with the help of the
likelihood table which contains the likelihood values of each observation landmark
pair. The best association to an observation is taken and the landmark update is
done by using a Kalman filter. At last the importance weight for each particle is
calculated and used for resampling which deletes some old particles produces new
ones.

5.4.1 Particle

An object of the class Particle represents a possible state of the vehicle at time t.
Each one has its own map with the landmarks it has derived from the observations
and the predicted position. The predicted position is a sum of the old predicted
position and the relative movement vector with some random factors.

72

5.4 FastSLAM

Figure 5.5: Flow chart of FastSLAM

5.4.2 Predicted particle pose

As explained in the previous chapter (see sect. 4.7.2), the motion model in three-
dimensional space has six degrees of freedom and thus six different parameters can
influence the newly drawn particle poses.

1 ibeo::Position3D Particle::sampleMotionModelOdometry(

2 ibeo::Position3D oldPosition,

3 ibeo::Position3D newPosition,

4 ibeo::Position3D originatingSample,

5 f loat alphaYaw1,

6 f loat alphaPitch1,

7 f loat alphaTrans,

8 f loat alphaYaw2,

9 f loat alphaPitch2,

10 f loat alphaRoll,

From the difference of the previous (oldPosition) and the current pose information
(newPosition) from the INSs or CAN-bus the vehicle control is derived and added to
the previous particle pose (originatingSample). The α-values determine the fraction
of the corresponding angles and distances which are used as σ parameter for a Gauss

73

5 Implementation

distributed sample. So if αtrans = 0.1 and transut = 2 the sampled transm,t will
be a value derived from a Gauss distribution with −σ = 2 − 0.1 · 2 = 1.8 and
σ = 2 + 0.1 · 2 = 2.2.

1 ibeo::Position3D movementVector = newPosition - oldPosition;

2

3 // calculating the angles for the f i r s t rotation to point in the direction of movementVector
4 f loat rot1yaw = atan2 (movementVector.getY(), movementVector.getX()) - oldPosition.getYawAngle();

5 f loat rot1pitch = atan2pitch (sqrt(movementVector.getY() * movementVector.getY() + movementVector.

getX() * movementVector.getX()), movementVector.getZ()) - oldPosition.getPitchAngle();

6

7 // calculating the distance to the new position (length of movementVector)
8 f loat trans = sqrt(movementVector.getX() * movementVector.getX() + movementVector.getY() *

movementVector.getY() + movementVector.getZ() * movementVector.getZ());

9

10 // calculating the angles to turn to the final orientation at the newPosition
11 f loat rot2yaw = newPosition.getYawAngle() - rot1yaw - oldPosition.getYawAngle();

12 f loat rot2pitch = newPosition.getPitchAngle() - rot1pitch - oldPosition.getPitchAngle();

13 f loat rot2roll = newPosition.getRollAngle() - oldPosition.getRollAngle();

14

15 // add noise
16 f loat rot1yawSample = rot1yaw - sample(alphaYaw1 * rot1yaw);

17 f loat rot1pitchSample = rot1pitch - sample(alphaPitch1 * rot1pitch);

18

19 f loat transSample = trans - sample(alphaTrans * trans);

20

21 // rot2 usually depends on rot1 , but this dependency is disregarded here
22 // usually a small rot1 leads to a small rot2
23 f loat rot2yawSample = rot2yaw - sample(alphaYaw2 * rot2yaw);

24 f loat rot2pitchSample = rot2pitch - sample(alphaPitch2 * rot2pitch);

25

26 f loat rot2rollSample = rot2roll - sample(alphaRoll * rot2roll);

The newly sampled parameters are transformed into the global Cartesian coordinate
system and set as the new particle’s position. For the full particle code see app. D.4.

For visualizing and evaluation purposes test runs showing the sampled particle
positions in comparison to the trajectory were plotted. The image shows a typical
banana shaped particle cloud like it occurs when the angle error is higher then the
translational error, which is the case with the dead-reckoning data from the CAN-bus
used to create fig. 5.6.

5.4.3 Likelihood table

The likelihood table holds all likelihood values for all combinations of the current
observations and all landmarks in a certain range around the current particle position.
This table can grow very large and cost a lot of computation time to calculate. Thus
some tricks to reduce computation time were applied. First of all only the landmarks
within a reasonable range of the current particles position are fetched and fed into the
table. When requesting the landmarks saved inside a particle the particle only returns
the ones within the perception range (for more details on particles see sect. 5.4.1).
The perception range is a value less than the maximum range the LRFs can scan.
For this thesis the perception range is set at 30.0 m although the LRFs are specified

74

5.4 FastSLAM

Figure 5.6: The red line shows the vehicle trajectory as plotted by the dead-reckoning
data from the car’s CAN-bus. The dot cloud at its end is the particle cloud created by
repeated pose sampling of 100 particles along the trajectory.

for distances up to 50.0 m, but landmarks in larger distances were found to be hard
to recognize reproducibly and scan points further away than the streets curb are cut
off anyway (see sect. 5.3.1). Secondly only the likelihood values between observations
and landmarks within close vicinity are calculated. As a cut-off distance 3.0 m were
chosen because the GPS error (see sect. 2.3) plus the new particles sampled position
will always be well within this range.

For the distance comparisons a two-step approach is used. The euclidean distance
between the particles position and the landmarks is only calculated after the distances
have been checked in a Manhattan like way. Concretely the range is checked per
axis. Only when the value for each axis on its own is within the limits the euclidean
distance is calculated. Ideally the expensive calculation of three multiplications and
one square root operation are saved and replaced by only one comparison.

1 bool Likelihoodtable::distLargerLimit(Point3D p1, Point3D p2, f loat maxDist)

2 {

3 i f (fabs(p1.getX() - p2.getX()) > maxDist)

4 return true;
5 else i f (fabs(p1.getY() - p2.getY()) > maxDist)

75

5 Implementation

6 return true;
7 else i f (fabs(p1.getZ() - p2.getZ()) > maxDist)

8 return true;
9 else i f (p1.dist(p2) > maxDist)

10 return true;
11 else
12 return false;
13 }

The proper calculation of the Manhattan distance is simply adding the x, y and z
distances of the two points to compare. The name corresponds to the rectangular
street grid of Manhattan in New York and is often also called Taxi distance because
this is the distance a cab would have to drive on a checker board to get to the given
coordinates.

Manhattan distance = x+ y + z (5.1)

Euclidean distance =
√
x2 + y2 + z2 (5.2)

Our FastSLAM algorithm spends a lot of time doing distance comparisons and has to
do even more over time. This is caused by the linearly growing numbers of landmarks
in the map. In every iteration of FastSLAM each landmark has to compare by the
particle to its position. But the goal to get quite stable number of comparisons for
the likelihood table was achieved.

5.4.4 Associate Observations with Landmarks

To find the correct association for an Observation to a Landmark one has to look
them up in the likelihood-table. The problem is that we want to prevent that two or
more Observations are matched to the same Landmark. Therefore it is not sufficient
that we seek only the association with the highest likelihood value, but additionally
note, whether these Observations can be better allocated to other Landmarks. On
the other hand, we do not want to disregard good associations, so we are still looking
for other assignments. To find these we have to know all associations with a better
likelihood. Therefore the best solution is to start with the best value of the whole
likelihood table, remember the corresponding Landmark and Observation and setting
all other likelihoods of possible associations for this Observation and Landmark to
0. This is repeated for min(|landmark|, |observation|) iterations and the likelihood
table in the end will hold nothing but the likelihood values of the best associations
and 0s.

1 void Likelihoodtable::findBestAssociations()

2 {

3 f loat lastGlobalMax = numeric_limits<float >::max();
4

5 for (size_t i=0; i<min(m_likelihoods.size1(),m_likelihoods.size2()); ++i)

6 {

7 f loat maxLikelihood = 0;

76

5.4 FastSLAM

8 size_t maxRow = std::numeric_limits<std::size_t>::max();

9 size_t maxColumn = std::numeric_limits<std::size_t>::max();

10 for (size_t row=0; row<m_likelihoods.size1(); ++row)

11 {

12 for (size_t column=0; column<m_likelihoods.size2(); ++column)

13 {

14 i f ((m_likelihoods(row, column) > maxLikelihood) && (m_likelihoods(row, column) <

lastGlobalMax))

15 {

16 maxLikelihood = m_likelihoods(row, column);

17 maxRow = row;

18 maxColumn = column;

19 }

20 }

21 }

22

23 i f ((maxRow < std::numeric_limits<std::size_t>::max()) && (maxColumn < std::numeric_limits<std::

size_t>::max()))

24 {

25 lastGlobalMax = maxLikelihood;

26

27 for (size_t row=0; row<m_likelihoods.size1(); ++row)

28 i f (row != maxRow)

29 m_likelihoods(row, maxColumn) = 0;

30

31 for (size_t column=0; column<m_likelihoods.size2(); ++column)

32 i f (column != maxColumn)

33 m_likelihoods(maxRow, column) = 0;

34 }

35 }

36 }

Whether a Landmark of an association is updated or a new Landmark is created
from the Observation depends on a threshold. The likelihoods are compared to this
threshold and if the likelihood of the best found association is less than the threshold,
the Observation is considered a new Landmark and the associated Landmark stays
untouched. The value of this threshold has to be found empirically and depends
heavily on the measurement noise model.

5.4.5 Kalman Filter for landmark update

When updating a Landmark position like described in sect. 4.7.6 a new mean and
covariance are calculated. This process is nicely encapsulated in our ekf class for
the extended Kalman filter. The full code calculating the formula can be found in
appendix D.3.

1 Landmark maxLM = likelihoods.getLandmarkWithMaxLikelihood(*iterZ);

2

3 Matrix associatedJacobian = ekf.landmarkJacobian(iterParticle->getlastOdometryUpdate(), maxLM.mean

);

4

5 Matrix associatedInnoCov = ekf.innovationCovariance(associatedJacobian, maxLM.covariance,

measurementNoise);

6

7 // update Kalman Gain (Probabilistic Robotics p. 461, l . 21)
8 Matrix associatedGain = ekf.ekfGain(associatedJacobian, maxLM.covariance, associatedInnoCov);

9

77

5 Implementation

10 // update Kalman Mean (Probabilistic Robotics p. 461, l . 22)
11 maxLM.mean = ekf.ekfMean(maxLM.mean, associatedGain, *iterZ, maxLM.mean);

12

13 // update Kalman Covariance (Probabilistic Robotics
14 // p. 461, l . 23)
15 maxLM.covariance = ekf.ekfCovariance(associatedJacobian, maxLM.covariance, associatedGain,

measurementNoise);

16

17 iterParticle->updateLandmark(maxLM);

For this step the Jacobian Matrix is needed. The Jacobian Matrix can be problematic
and cause numerical instability under certain circumstances which are faced in this
implementation. The next section explains these and how the problem is dealt with.

Jacobian Matrix

Using a Jacobian Matrix as described in section 4.7.6 is calculation intensive, because
it involves several sinus and cosine calculations for every landmark in every particle
every round of the FastSLAM algorithm. Additionally the matrix calculations
involved often encounter numerical instability in certain cases, i.e. when the vehicle
is only moving very little between scans and the values in the matrices become very
small. This makes the Jacobian Matrix and the calculations it involves unreliable
and causes hard to correct errors.

1 Matrix ExtendedKalmanFilter::landmarkJacobian_original(Position3D estimatedRobotPose, Point3D

landmarkEKFMean)

2 {

3 const f loat r = landmarkEKFMean.getX() - estimatedRobotPose.getX();

4 const f loat t = landmarkEKFMean.getY() - estimatedRobotPose.getY();

5 const f loat p = landmarkEKFMean.getZ() - estimatedRobotPose.getZ();

6

7 Matrix jacMat (3, 3);

8

9 jacMat(0, 0) = cos(p) * sin(t);

10 jacMat(0, 1) = sin(p) * sin(t);

11 jacMat(0, 2) = cos(t);

12 jacMat(1, 0) = cos(p) * cos(t)/r;

13 jacMat(1, 1) = cos(t) * sin(p)/r;

14 jacMat(1, 2) = -(sin(t)/r);

15 jacMat(2, 0) = -((1/sin(t) * sin(p))/r);

16 jacMat(2, 1) = cos(p) * (1/sin(t))/r;

17 jacMat(2, 2) = 0;

18

19 return jacMat;

20 }

A more reliable solution was implemented by replacing the 3D Jacobian Matrix by
an identity matrix and transforming all observations into the absolute Cartesian map
coordinate system. This way there is no need to convert from spheric to Cartesian
coordinate systems or back within the FastSLAM algorithm anymore, but the sensor
data has to be transformed to Cartesian map coordinates. Still, this solution comes
at virtually no costs since the coordinate system conversions are done within the
AppBase already anyway.

78

5.4 FastSLAM

1 Matrix ExtendedKalmanFilter::landmarkJacobian(Position3D estimatedRobotPose, Point3D landmarkEKFMean

)

2 {

3 return IdentityMatrix(3,3);

4 }

All other parts of the FastSLAM algorithm work just as fine as before since the
landmarks and their covariances and the vehicle poses are already stored and handled
in absolute Cartesian map coordinates. This change introduces minor mistakes
into the model, which can be ignored, though. For example the measurement noise
and the covariances of the landmarks are modeled according to a vehicle-centric
spheric coordinate system. Transforming them to absolute Cartesian coordinates
changes their orientation and thus for example the area covered by the covariances
changes. But the measurement noise used in this work is modeled as a sphere and
thus completely symmetric, so changing the orientation has no effect after all.

Importance weight

As outlined in the previous chapter (see sect. 4.7.7) the importance weights are the
basis for the important decision in the following resampling step which particles are
a good representation of the mapped environment and to reproduce and which are
not and are to be discarded. The original FastSLAM description by Thrun does not
include handling of multiple landmark and observation associations and assumes the
extension of the algorithm from one to multiple associations is trivial. Only the hint
to generate an importance weight for a particle by multiplying the likelihood values
for the associations of the particle is given. In practice this turned out to often result
in extremely small importance weights or even an importance weight of 0, so it was
decided to use the average likelihood value over all associations within the particle.

1 // calculate importance weight average
2 f loat importanceWeight = 0.0;

3 int importanceCounter = 1;

4

5 // Loop through al l observations
6 for (ZCollection::iterator iterZ = z_t.begin(); iterZ != z_t.end(); ++iterZ)

7 {

8 f loat maxLikelihood = likelihoods.getMaxLikelihoodForObservation(*iterZ);

9

10 assert(maxLikelihood == maxLikelihood);

11

12 importanceWeight += maxLikelihood;

13 ++importanceCounter;

14 [...]

Using the average likelihoods the values of the importance weights stay quite stable,
are still representing a difference in particles suitability for the resampling step and
they are not getting close to the lower floatingpoint value limits.

79

5 Implementation

Resampling

For the resampling step (see sect. 4.7.7) an efficient algorithm by Madow [Mad49]
was chosen. It is easy to implement and works in O(M) with M being the number
of particles.

1 void SLAMWorker::resamplingParticle()

2 {

3 ParticleCollection newParticleCollection;

4 ParticleCollection::iterator iterParticle = m_particles.begin();

5 f loat sum = iterParticle->getNormRating();

6 f loat lookingValue = 0;

7

8 // cumulative distribution function
9 for (size_t i=0 ; i<m_maxNumOfParticles ; ++i)

10 {

11 lookingValue = ((uniformRand(0, 1) + i) / m_maxNumOfParticles);

12 assert (lookingValue <= 1);

13 while (lookingValue > sum)

14 {

15 ++iterParticle;

16 sum += iterParticle->getNormRating();

17 }

18 newParticleCollection.push_back(*iterParticle);

19 }

20

21 m_particles = newParticleCollection;

22

23 assert (sum <= 1.1);

24 }

Using INS position information for rating particles

Since the INSs used provide position information and we know from their data
sheets how much we can trust their accuracy (see tbl. 2.2 and tbl. 2.3) the position
information can be used for rating particle position estimates. Based on the accuracy
of 1.5m CEP of the basic SPS GPS service of the RT3040 INS, up to 3m difference
of position estimates are considered well within probable limits. Particles with
position estimates farther away than 3m from the INS position information are given
a penalty. A function calculates a factor in the interval of]0, 1] to apply to the
particle rating. If the position difference is higher than the above mentioned limit of
3m an exponentially decreasing function is applied. The result of this function is
then multiplied to the particles rating:

5.4.6 Pseudo random number generator

For generating samples for particle positions and for the stochastic select resampling
random numbers are needed. On a computer it is really hard to get hold of real
random numbers so a pseudo random number generator (PRNG) is used. The boost
library has a good implementation which is used for all random numbers needed in

80

5.4 FastSLAM

Figure 5.7: This figure shows a view of all Particles saved Landmarks extracted from
a Merkurring scan. The best rated Particle’s Landmarks are colored red and the other
Particle’s Landmarks were arbitrarily colored with varying green and blue levels.

this work. The boost PRNG is very configurable and flexible, but also needs some
care to set it up properly. First of all a generator is an algorithm that produces
numbers which seem random, but are reproducible. That is why a seed is used as a
starting point for the algorithm. The current time works well as a seed and ensures
that PRNGs started at different times yield different series of numbers. But if more
than one generator is started with the current time as a seed in a short timespan,
which happens easily on a computer, those generators might get the same seed and
thus produce the same series of numbers. This is why a programmer should make
sure to only use one generator and access this one from everywhere where random
numbers are needed. This means also to take care not to accidentally copy the
generator, for example when calling a function with the generator as a parameter. As
a generator algorithm the Mersenne-Twister was chosen because it is very fast and
proven to generate uniformly distributed series of numbers. It also has a long period
of 219937− 1 until it starts repeating the same numbers again. When a certain type of
distribution is of advantage boost offers mechanisms to do that, too. Different types
of distributions can easily be defined and combined with a PRNG to create a variate
generator which returns numbers according to the given distribution. In case of the
particle samples a normal distribution centered at 0 with σ = 1 is the best choice.

81

5 Implementation

1 f loat SLAMWorker::trustInPosRelToGps(f loat distance)

2 {

3 const f loat m_lowerGpsBound = 3.0;

4

5 i f (distance < m_lowerGpsBound)

6 result = 1.0;

7 else
8 result = exp(m_lowerGpsBound - distance);

9

10 return result;

11 }

12 [...]

13 iterParticle->setRating(iterParticle->getRating() * trustInPosRelToGps(distanceToGpsPos));

Table 5.3: Calculate a factor in the interval]0,1] depending on the distance of a particles
position estimation to the position information of the INS to apply on the particles rating.
For distances less than a bound of 3m no penalty is applied and after this the factor
decreases exponentially. The factor then is multiplied with the particles rating.

1 // choosing a generator
2 static boost::mt19937 generator;

3 [...]

4 // choosing a normal distribution centered at 0 with a sigma of 1
5 boost::normal_distribution<> norm_dist(0, 1);

6 [...]

7 // combining generator and distribution to create a
8 // method which returns a number every time it is called
9 boost::variate_generator<boost::mt19937&, boost::normal_distribution<> > boost_nrand(generator,

norm_dist);

Now when the method boost nrand() is called it returns the next normal distributed
pseudo random number. Madows resampling algorithm (see sect. 5.4.5) needs uniform
random numbers in the interval [0, 1[. The same generator as defined above is used,
but boost::uniform real<double>(min, max) is used instead of the normal distribution
to create another boost::variate generator object.

5.5 Relaxation

For the implementation of the relaxation algorithm shown in sect. 4.5 you need the
data from the INS and the data of the vehicle can bus. Because the can bus provides
data much more frequently than the INS only that can bus message will be used
which follows an INS message. Out of these two message a struct is built and saved
to a circular buffer. The size of the circular buffer can be given by a parameter.
When the buffer is full iteratively three consecutive entries are taken and a relaxation
step is done.

In each step the middle one of the three positions is updated. To do so a relative
vector from the previous and one from the successor to the middle one is generated.

82

5.5 Relaxation

This relative vectors are in the vehicle coordinate systems of the the outer points.
To transfer this vectors to the global coordinate system the data of the INS of
both outer points is used which consist out of a WGS84 message which includes
the 3D coordinates and the orientation of the vehicle. Now the arithmetic middle
of the vectors can be calculated and is saved as new coordination part of WGS84
information of the middle point.

1 in l ine void RelaxationWorker::relaxationalgo(boost::circular_buffer<State>::iterator iter0 , boost::

circular_buffer<State>::iterator iter1 , boost::circular_buffer<State>::iterator iter2)

2 {

3 // calculation of the vector from iter2 to its predecessor based on the angles and vehicleState of
iter2

4 ibeo::VehicleStateBasic::RelativeVehicle::RelativeVehicle relativeVehicleState((iter1)->

vehicleState, iter2->vehicleState); //current and previous interchanged because of need of
negative vector

5

6 ibeo::geom3d::HMatrix m = ibeo::geom3d::rotationRoll (-(iter2->wgs84.getRollAngleInRad()));

7 m = boost::numeric::ublas::prod (ibeo::geom3d::rotationPitch(-(iter2->wgs84.getPitchAngleInRad()))

, m);

8 m = boost::numeric::ublas::prod (ibeo::geom3d::rotationYaw(-(iter2->wgs84.getYawAngleInRad())) ,

m);

9 ibeo::geom3d::HVector relativeWorldState_21 = boost::numeric::ublas::prod(m ,(ibeo::geom3d::

makeHVectorRect(relativeVehicleState.getDeltaPos().getX(),relativeVehicleState.getDeltaPos().

getY(),0)));

10

11 // calculation of the vector from iter0 to its successor based on the angles and vehicleState of
iter0

12 relativeVehicleState = ibeo::VehicleStateBasic::RelativeVehicle::RelativeVehicle((iter1)->

vehicleState, iter0->vehicleState);

13

14 m = ibeo::geom3d::rotationRoll (-(iter0->wgs84.getRollAngleInRad()));

15 m = boost::numeric::ublas::prod (ibeo::geom3d::rotationPitch(-(iter0->wgs84.getPitchAngleInRad()))

, m);

16 m = boost::numeric::ublas::prod (ibeo::geom3d::rotationYaw(-(iter0->wgs84.getYawAngleInRad())) ,

m);

17 ibeo::geom3d::HVector relativeWorldState_01 = boost::numeric::ublas::prod(m ,(ibeo::geom3d::

makeHVectorRect(relativeVehicleState.getDeltaPos().getX(),relativeVehicleState.getDeltaPos().

getY(),0)));

18

19 // new Positions for iter1
20 PositionWGS84 wgs84_01 = iter1->wgs84;

21 wgs84_01.transformFromTangentialPlane(relativeWorldState_01(0),relativeWorldState_01(1), iter0->

wgs84);

22 PositionWGS84 wgs84_21 = iter1->wgs84;

23 wgs84_21.transformFromTangentialPlane(relativeWorldState_21(0),relativeWorldState_21(1), iter2->

wgs84);

24

25 // arithmetic mean
26 iter1->wgs84.setLatitudeInRad((wgs84_01.getLatitudeInRad() + wgs84_21.getLatitudeInRad())/2);

27 iter1->wgs84.setLongitudeInRad((wgs84_01.getLongitudeInRad() + wgs84_21.getLongitudeInRad())/2);

28 iter1->wgs84.setAltitudeInMeterMSL((iter0->wgs84.getAltitudeInMeterMSL() + iter1->wgs84.

getAltitudeInMeterMSL() + relativeWorldState_01(2) + relativeWorldState_21(2))/2);

29 }

This is done for all trio entries of the circular buffer and if set by a parameter more
than one time. Now the oldest entries are removed from the buffer and sent back to
the AppBase. How many are removed again can be determined by a parameter. To
fill the buffer new INS messages and their related can bus messages are linked and
stored. When the buffer is full the relaxation step starts again.

83

5 Implementation

5.6 Summary

The AppBase has some restrictions we had to circumvent, probably because it
was designed for a different kind of data processing than necessary for FastSLAM.
Nonetheless all problems could be solved, FastSLAM was implemented successfully
and scan models can be exported as OFF files for further evaluation without the
need to install the proprietary AppBase software framework.

Additionally to the FastSLAM algorithm Relaxation was implemented to iron out
the uneven trajectory of the Xsens MTi-G.

84

Discussion

6
The theoretical description of the FastSLAM algorithm is only a broad outline. For
the implementation many decisions had to be made about how to specifically address
the open points of this outline. After implementing the FastSLAM algorithm tests
were run to evaluate if the implementation is able to improve the maps generated by
the 3D-HTRF project. The tests and their results, as well as the above mentioned
design decisions are described and discussed in this chapter.

6.1 Design decisions

The FastSLAM algorithm is only specified in a rough outline and leaves many details
open. These details can be implemented in many different ways, depending on the
specific use-case, the sensors available, the vehicle used and time and resources at
hand. Many choices about the algorithms described in the implementation (sect. 5)
were made.

When possible an easy to implement option was chosen with only little regard to
runtime complexity. The heavy transport company Gustav Seeland GmbH stated
that examining the transport route the usual way with scouts being sent out takes
seven to ten days (sect. 1.1) and as long as the processing of the maps with FastSLAM
does not take longer than this while yielding the same quality or better maps, it is
considered an improvement. Consequently fail-safety and code quality was chosen
over runtime speed.

6.1.1 FastSLAM 1.0 vs. FastSLAM 2.0

The FastSLAM 2.0 algorithm is an improved version of the FastSLAM 1.0 algorithm
implemented in this thesis. The performance of the FastSLAM 1.0 algorithm might
actually suffer if the motion information is noisier than the sensors observations,
because the proposal distribution of the particle filter will be matched poorly with
the posterior probability distribution. Since the LMS151 used in the context of this
thesis has errors of up to 2 cm statistically and up to 4 cm systematically and the

85

6 Discussion

sensor is moved around the landmarks, errors can sum up to ±6 cm. Additionally
movement of the vehicle during a scan rotation of the LRF is not corrected for which
can take up to 44 cm (see sect. 7.1.2). The landmark detection based on the change
of the echo pulse width is variable, too, and depends on many factors like distance
and angle to the reflecting object, which changes often when moving. Plus during
the calculation the position of the landmarks is shifted a bit due to the way the
street surface marking detector is implemented (see sect. 5.3.2). In summary it can
be said that the sensor error is higher than the position error of the INSs and thus no
need for FastSLAM 2.0 is present. FastSLAM 2.0 is mathematically more involved
than FastSLAM 1.0 and therefore will need more runtime. It also is more complex
to implement (as described by [Hus10]) and since no advantage is to be expected for
the purpose of this thesis FastSLAM 1.0 was chosen.

6.1.2 Slicing

FastSLAM was designed for stop-scan-move patterns where large, overlapping point
clouds corresponding to each pose are created. This is necessary for FastSLAM to
extract landmarks, rediscover them later and use those associations for its extended
Kalman filter to refine landmark positions and thus the resulting map. Since it is
impractical for a car to repeatedly stop in traffic and because the Laser Range Finder
configuration of the 3D-HTRF car is such that it records mostly vertical planes, the
scan data of the 3D-HTRF project is not suitable for processing with FastSLAM.
Thus a process called ‘slicing’ similar to the segmentation described in [CN06] was
developed. Assuming that within short ranges the odometry information is accurate
enough to ignore the error (see the experiment in sect. 1.3), several scan planes are
put together and associated with one pose to simulate large point clouds as needed
by FastSLAM. The overlap necessary to rediscover landmarks is created by building
the slices in a fashion that a certain number of vertical planes is used in both, the
current and the previous slice, so they share them.

This is a great way to adapt the FastSLAM algorithm from the stop-scan-move
paradigm to a continuously moving vehicle and avoiding problems. For example if
the vertical planes were used as they are the FastSLAM algorithm would most likely
match the planes all on each others, because of their close proximity and because
they are very similar. This still occurs with the vertical planes shared over slices but
is desired then, because the similarity is only partly and only the parts belonging
together are matched.

6.1.3 Edge and corner detection

In 2D SLAM edge detection is widely used for landmark extraction (six common
variants are presented in [NMTS05]). The points transmitted by the scanner are

86

6.1 Design decisions

processed according to the sequence they were determined. This means that they are
sorted. If multiple points are on a line the last and first one of this line is searched
and marked. The line is the 2D image of a plane and ends of the line are one point
of the edge of this line.

For a full six DoF SLAM edges are harder to find because the next neighbors are not
known. This problem is caused by the unknown order of the points in 3D. All points
have to be tested if the distance is the shortest. A plane has to be extracted to find
the edges. Unlike edges in a 2D section of a 3D world, edges in 3D still have one
degree of freedom. This can be used for localization (see [SMDW11]), but to get real
landmarks the corners have to be calculated. It becomes even more difficult when
looking at curved surfaces. An edge extracted out of the scan points of a cylindrical
shaped object changes when looking at the same object from another angle.

All in all the creation of landmarks out of corners in 3D point clouds is an expensive
and complicated task. Additionally edge and corner detection needs edges and
corners to detect. Highly irregular shapes like nature found beneath country roads
will challenge the algorithms much more than urban ares with man-made structures.
Instead of adapting edge and corner detection for all the different environments
expected to encounter it was decided to settle for more efficient alternatives.

6.1.4 Landmark detection

Many different ways to handle the landmarks, i.e. with edge and corner detection
like discussed in the previous section, were thought of and tested to be ruled out
in the end in favor of the simplest solution of them all. Recognizing and classifying
complete street surface markings seems like a good idea at first glance but comes
with a lot of computational effort like clustering all the scan points of each scan. This
can be done quite well because the shape and sizes of the street surface markings
are standardized. These standards can be looked up for every country and used as a
basis for a clustering algorithm’s parameters (like in sect. 5.3.4). Unfortunately the
method used for grouping the scans into slices leads to the problem that almost all
slices contain only cut-off parts of street surface markings. This makes it really hard
to determine derivative data points for example the center of gravity of a cluster and
match street surface markings. Just using the derivative of the echo pulse width
without any further processing yields quite good landmarks already. This way every
scan point of the border of a street surface marking is a landmark. This might create
many erroneous landmarks which cannot be found again, but many more landmarks
will match. The number of landmarks is slowing down the runtime of the algorithm,
but this simple and safe approach works well for the purposes of this thesis.

87

6 Discussion

6.1.5 Likelihoods

Associating the saved landmarks with the current observations is a crucial part for
the FastSLAM algorithm. Some techniques like SIFT and SURF features can be
described by a unique vector and thus easily and quickly associated

Associating the saved landmarks with the current observations is a crucial part for
the FastSLAM algorithm. A lot of the runtime is spent with calculating the possible
associations and their likelihoods to decide which associations are the most likely
ones. Instead of comparing each landmark with every observation several approaches
exist to tackle this problem.

SIFT or SURF or similar features can be described by a unique vector which is stable
between scans and to establish the association nothing more than a comparison of
these vectors is needed, but those features are designed for 2D images and need to
be adapted to 3D laser range data. Also they need more calculation time to detect.
There might still be advantages of using them which is why they are further discussed
in the outlook (sect. 7.2.1).

The FastSLAM book ([MTS07]) by Thrun and Montemerlo proposes a method
called Monte Carlo Data Association. The idea is to assign associations with a
probability according to the likelihood values between landmarks and associations.
This approach also addresses the LRFs measurement error by not assuming the most
likely associations to be consequently correct and adding a probability. But apart
from costing more runtime this approach also needs more particles to represent the
different possible associations.

Another idea is to add all landmarks into a data structure which allows for fast nearest
neighbor searches, e.g. the data structures described by P. N. Yianilos in [Yia93].
The problem with most data structures for nearest neighbor is that adding landmarks
requires to rebuild the complete data structure and new landmarks are added every
round of the FastSLAM algorithm to every particle. Special care must be taken in
selecting the right data structure to ensure that the gained speed-ups are not being
out-balanced by the more costly manipulation operations.

All in all using the plain Maximum Likelihood Data Association proves as simple,
yet powerful method for finding landmark and observation associations and the
alternatives do not promise a justifiable improvement in accuracy or runtime for the
complexity they add to the algorithm or research work needed to adapt them.

6.1.6 Resampling

There are many sampling algorithms available. Madow’s systematic sampling algo-
rithm is easy to implement, works accurately and executes in linear time O(N) with
the number of landmarks N . This can be improved by not copying all landmarks of

88

6.1 Design decisions

all particles every resampling step, but that would require a more complex particle
representation. Since the resampling step is not taking up much runtime and runtime
is not a concern of this thesis it was decided to keep the algorithm simple and not
add the complexity of an highly efficient data structure.

6.1.7 Modeling of errors and probabilities

Assessing the exact error model for the LRF model or the INSs is out of the scope
of this thesis. But this is not necessary because using rough assumptions about
the error models taken from the data sheets is sufficient for the algorithm to work.
This advantage goes mostly back to the nature of the particle filter which allows for
such deliberate errors within some boundaries to be irrelevant. As long as enough
particles are sampled from the posterior distribution a sufficient number of particles
will be close enough to the real state of the world.

Rt =

 0.1 0 0
0 0.1 0
0 0 0.1

 (6.1)

The value of 0.1 m for the measurement noise matrix diagonal is a bit above the
maximum error a LMS151 can have and proved to work well throughout all conducted
tests.

6.1.8 Coordinate Systems

Contrary to Thrun suggestion to handle observations data in polar, or in our case
spheric coordinates and transforming back and forth to the Cartesian coordinate
system of the map, we eliminated the Jacobian Matrix as a cause of numerical
instabilities in the extended Kalman filter calculations. To do so the Jacobian
Matrix is replaced by an identity matrix and all scan points are transformed and
handled in Cartesian coordinates. This comes at no costs for the implemented
FastSLAM algorithm since the design of the AppBase requires to transform the
coordinates already. Small differences in the way the covariances are modeled in
spheric coordinate space compared to Cartesian coordinate space can be ignored
safely. With this decision the implementation gains stability and saves calculation
time.

6.1.9 Data structures

For the most part the data structures already implemented by the AppBase are
used. This is because the LRF-, position- and map data of the 3D-HTRF project

89

6 Discussion

is all saved in a proprietary binary format and the quickest way to access it is to
use the AppBase framework and the data structures it provides. Although the data
structures of the AppBase are mainly designed for linear filtering operations on the
data and running an algorithm like FastSLAM, which will change data in the past
based on current information within the AppBase, is already out of the specifications,
but doable. The hardest problem with using the AppBase data structures is the
termination problem mentioned in sect. 5.2. Other than that the only advantage
from using different data structures would be a better runtime and less memory
usage. As mentioned in this chapters introduction this is not a concern, but a well
working implementation and easy to understand code are important. In the next
chapter (see sect. 7.2.2), more efficient data structures are suggested.

6.1.10 Data output

Since the calling order of the AppBase destructors are unknown the current state of
the best map is written out regularly in an OFF file (see sect. 5.2). The last few
steps of the FastSLAM matching process might be thus lost, but this problem is
easy to overcome by simply feeding the algorithm as much data as could maximally
be lost more in the end. The number of scans to add to the end can be calculated
by multiplying the size of the interval at which the output is written to disk by the
number of non-overlapping scans in a slice. Using OFF as a file output format also
has the advantage of avoiding the proprietary binary format used by the AppBase and
making the data accessible through freely available software for further inspection
and replication.

6.2 Results

The 3D-HTRF project heavily relies on a user to evaluate the generated maps. For
automatic analysis the system would have to be very accurate and free of errors
in the maps. Many problems in the scanning process are very hard to correct
algorithmically, i.e. occlusions and odd reflections. Humans, though, are able to
interpret the scan data on a higher level of understanding and can judge from it quite
well what the real world must be like. Also, a video is recorded while scanning which
can be consulted by the user for a visual confirmation of his or her understanding.
Additionally a user with experience in heavy transports can contribute his or her
expertise in the interpretation of the maps.

All in all it probably is a tedious and complex work, way out of scope of this thesis,
to do automatic evaluation of the maps, which is able to compete with human visual
interpretation skills. Thus the evaluation of the maps and their improvements is
done by visual inspection and no metric to compare the maps was developed.

90

6.2 Results

Thus comparing the resulting maps from different position data sources before and
after processing them with the FastSLAM algorithm implemented in this work is
a difficult task. The results are discussed using screenshots of certain problematic
areas and comparing them visually with each others. This way the results will be
more helpful to the persons working with the 3D-HTRF project than values of an
abstract metric.

Figure 6.1: A photo of the Merkurring looking at the central pole from a position a few
meters away from the lamp post used for evaluating the map accuracy.

The test track used is a street in Hamburg Rahlstedt called Merkurring. It is located
in a business park and does not have much traffic. As shown in figure 6.11 it contains
a roundabout. Roundabouts are typical obstacles of heavy transports and lead to
the situation that the car could drive one time around and come to the same place
as it was before. This entails some second scans of the same objects that need to be
matched on each others. Now some standing out and easy to recognize object can
be chosen and used for assessing the accuracy of the scan matching.

1http://www.meyle.com/_download/press/Meyle_Gebaeude_Merkurring_Hamburg_print_2.

5MB.jpg (May 30th, 2011)

91

http://www.meyle.com/_download/press/Meyle_Gebaeude_Merkurring_Hamburg_print_2.5MB.jpg
http://www.meyle.com/_download/press/Meyle_Gebaeude_Merkurring_Hamburg_print_2.5MB.jpg

6 Discussion

6.2.1 Comparison of ICP to FastSLAM

In the beginning of this work an experiment was conducted (see sect. 1.6.1) to
evaluate and compare the different position data sources.

To rate ICP one of this scan drives is sliced and matched with an ICP algorithm (see
sect. 3.4). This algorithm is taken from a framework called SLAM-6D. The resulting
map (fig. 1.6) clearly shows that this approach does not yield any usable maps. The
slices are put together in a seemingly arbitrary fashion and trees are pointing in all
directions. The reassembled trajectory in the upper left corner of the picture is going
in a big loop which obviously is wrong since the original data is from a straight line
only. SLAM-6D failed at processing the test data completely.

ICP is not suitable for the improvement of existing maps. The method to match
all points of the point clouds without considering the position of the vehicle is not
appropriate. The FastSLAM algorithm has the option to set some parameters which
represent the believe in the given pose (see sect. 5.4.2) with the consequence that
comparing to ICP FastSLAM produces much better maps.

6.2.2 Replacing an INS

INSs are expensive systems and the hardware used in the 3D-HTRF project costs
e 3,500 to e 41,000 (see chapter 2). Replacing an INS by improving the maps
generated from the CAN-data which comes for free with the car would be a great
way to reduce costs. Therefore the first test is a comparison of a map generated from
CAN-data only.

In the original map (see top picture in figure 6.2(a)) the lamp post is showing up
twice, roughly 4 m apart. When looking at the parked car one can see that the offset
is mainly sideways which suggests the error being an angular one from going around
the roundabout. The translational error is as expected small, like it has been in the
experiment in the beginning of this work (see sect. 1.3).

The resulting map (see bottom picture in figure 6.2(b) has the lamp post showing
up twice again. This time the distance got even larger, which can be seen easily at
the car. So instead of improving the match of the features significant and important
to the user, the matching process deteriorated those.

For the CAN data only FastSLAM is not able to match the 3D-HTRF data any
better than it lines up already without any matching.

6.2.3 Using the Xsens MTi-G instead of the Oxford Technical Solutions
RT3040

Although FastSLAM is often used to entirely replace a GPS receiver, a lot is achieved
if the expensive, high precision Oxford Technical Solutions RT3040 can be substituted

92

6.2 Results

Figure 6.2: On the upper image one can see a map built from CAN data only. It is taken
from the 3D-HTRF project without any processing. The scans do not match up and the
lamp post is clearly twice in the map. The bottom image shows the same lamp post after
applying the implemented FastSLAM algorithm to the map. The lamp post is still visible
twice. This shows that FastSLAM is not able to replace an INS in the context of the
3D-HTRF project.

by the Xsens MTi-G combined with FastSLAM postprocessing while preserving map
quality. This step would save the difference of the prices of these two INSs, which
would be e 41, 000 − e 3, 500 = e 37, 500 and thus almost half the system’s total
hardware costs (compare chapter 2).

To evaluate this question first the Xsens MTi-G is assessed to see if the map was

93

6 Discussion

improved by the FastSLAM postprocessing.

Again the first figure (top picture in figure 6.3(a)) shows the lamp post doubled, but
this time recorded by the Xsens MTi-G. The map is not much more accurate than
the one built from the CAN data. In this case the translational error is quite high
and the scans of the lamp post are mainly separated along the street, in direction of
the driving car.

The bottom figure (in figure 6.3(b)) shows the map from above after processing
through FastSLAM. The two scans of the lamp post are at about the same positions
like before. No improvement can be seen, but the lamp posts are tilted a bit after
processing.

The tilted lamp post can be explained by the comparing the next pair of pictures,
which was created to take a closer look at the seemingly impairment of the map
through FastSLAM processing it.

In the top picture is again the original prior to any processing (figure 6.4(a)). One
can clearly see that the trajectory coming from the roundabout is vanishing under
the scans from the part of the trajectory going to the roundabout. This is due to
the large height error the Xsens MTi-G does make.

The bottom picture (see figure 6.3(b)) shows the same view in the result data and
it can be seen that the floor level matches better than in the original data. This
is an easy matchable case, that can be matched quite well even with the otherwise
impractical LRF mounting design of the 3D-HTRF project. That is because to
match the floor level what needed is, is mainly floor data which is available enough
of in every slice.

Although FastSLAM was able to improve the map in one aspect this is not the
wished for result and not sufficient to substitute the Oxford Technical Solutions

94

6.2 Results

Figure 6.3: Maps built with the Xsens MTi-G are not much better than the maps built
from CAN data, shown in the previous section. The lamp post still shows up twice in the
unprocessed upper image. In the lower image the two lamp posts are still far away from
each other. There is no significant improvement.

RT3040 with the Xsens MTi-G. The partly improvement of the floor level match
implies that FastSLAM is working, but the data foundation is not well enough for
the matching to work in other orientations or dimensions.

95

6 Discussion

Figure 6.3: Another problem of the Xsens MTi-G is the height information as can be
seen on the upper picture where the right hand side trajectory is positioned below the left
hand one although the car was on the same street level when recording both trajectories.
The lower image shows an improvement in the height of the right hand side trajectory, but
the floor plane is still tilted and does not match up perfectly.

6.2.4 Improving maps built from Oxford Technical Solutions RT3040 data

The maps created by the Oxford Technical Solutions RT3040 are the ones with the
best quality so far. Improving these would be very helpful towards the accuracy
needs of heavy transport companies (compare with sect. 1.2).

Although those maps are the best to come from the 3D-HTRF project, the lamp
post still shows up twice, as can be seen in the upper picture of figure 6.4(a). The
distance of the two scans is only about 20 cm though.

In the processed version of the map (bottom in figure 6.3(b)), the gap between the
two scans of the lamp post grew bigger. All other parts of the map are fine and the
floor is matched nicely, but the significant features are not. Matching the floor is
easy compared to an object like a lamp post, because the floor is a large plane with
lots of scan points that can be matched, even when they are not entirely properly
aligned.

Improving the maps generated with the Oxford Technical Solutions RT3040 did not
work either.

6.2.5 Conclusion

FastSLAM produces much better results than the ICP algorithm of the SLAM-6D
framework using the data from the 3D-HTRF project. It is able to put the maps,

96

6.2 Results

Figure 6.3: Again the upper image shows the map taken from the 3D-HTRF project, this
time made using the data from the RT3040 INS. The lamp post is already matched quite
well. After applying the FastSLAM algorithm the resulting map is less accurate, as can be
seen in the lower image.

which were sliced in preprocessing and reduced to sets of landmarks, back together,
which proves that the algorithm is working fine.

The evaluation of the processed maps, though, shows that the hardware of the 3D-
HTRF project is not suited for the FastSLAM algorithm to unfold its full potential.
Even using slicing as a means to adopt the data for FastSLAM cannot solve this
problem by itself.

In order to achieve an improvement in the FastSLAM results, the configuration of

97

6 Discussion

the Laser Range Finders has to be changed. They need to be mounted in a way
that allows for creating slices with more coverage of the surrounding environment,
so more observations can be extracted per pose. Because then more information for
each slice is available and FastSLAM can place them more precisely in relation to the
saved landmarks. This will also decrease the undesired influence of the incremental
influence of the identical, overlapping scan planes.

Within the preprocessing done in the 3D-HTRF framework the offset of the scan
points measured while driving is neglected. Although the Laser Range Finders take
about 20 ms to record a 270°swipe, those scan points are treated as if they were
taken at the same instant. Especially in curves this offset can be very high due to
the angular error.

Another approach would be to additionally use visual data. Visual data usually is
available at higher resolutions and gathers more utilizable data like e.g. colors. Scan
points from Laser Range Finders are derived from quite large laser beams which can
reflect multiple times from multiple objects and then are simplified to one point in
space. With SIFT or comparable visual feature extraction techniques very precise
matching can be done like [BLO+09] does.

Without changing the hardware setup the maps from the 3D-HTRF project will
most likely not be improvable with FastSLAM.

6.3 Statistics

As explained in the results section (see sect. 6.2) there is not much sense in comparing
the maps with a metric, so none was developed.

Furthermore measuring improvement of a map is impossible without a reference to
compare with. Usually this reference for SLAM algorithms is a GPS generated map,
but in this work GPS is already used for creating the maps in the first place and thus
cannot be used as ground truth for comparison. Other means to construct a ground
truth with the necessary accuracy would be too costly and out of scope in this case.

Although it was not a concern to this work’s goals, we took a look at the performance
of the FastSLAM algorithm to validate that it behaves as expected.

6.3.1 Runtime

Despite the fact that FastSLAM is only working on landmarks and comparatively
efficient, the SLAM problem is calculation intensive. Running a matching process
like the roundabout used for evaluation in this chapter, which is about 160 m long,
takes several hours up to a day. In this case about 170 matching processes are
calculated with 100 particles and a total of several 100,000 landmarks per particle.

98

6.3 Statistics

Unfortunately longer test runs, or test runs with more particles were not possible
since those would take several days each, but the test track is long enough to evaluate
if FastSLAM as a method can be used with the 3D-HTRF hardware setup. The
runtime depends on the number of particles M used and the number of landmarks N
in the way that O(M ·N). If the hardware can be changed to work with FastSLAM,
then the algorithm could be improved to O(log(N)) (as described in [MTS07]) and
in the outlook (chapter 7) the steps towards such an algorithm are outlined.

Figure 6.4: The runtime of the basic implementation of the FastSLAM algorithm rises
linear with the number of Particles M .

Figures 6.4 and 6.5 show that the FastSLAM implementation’s runtime linearly
depends on the number of Particles M and also linearly on the number of matched
landmarks N . This supports that it has a complexity of O(M ·N) like expected.

6.3.2 Memory usage

Every Particle saves its own list of Landmarks and thus many very similar or
even identical datasets are stored. With every point cloud processed a number of
Landmarks is added to all Particles, thus steadily increasing the memory usage. But
even with the 3 GB RAM limit of 32 Bit computer systems this is not a problem for
the implemented FastSLAM. As figure 6.6 shows, the memory usage for an extensive
test run does not reach the memory limit. The graph also shows that the memory
usage increases linearly as predicted.

If memory usage becomes a concern the data structurces mentioned in section 6.1.9
will help reducing it tremendously.

99

6 Discussion

Figure 6.5: The runtime of the basic implementation of the FastSLAM algorithm also
rises linear with the number of matched Landmarks N .

Figure 6.6: This graph shows the memory usage of the implemented FastSLAM over
time. The memory usage reflects the number of Landmarks saved because that is the main
data structure stored by the Particles, so this graph gives a good impression on how many
Landmarks are in use by the FastSLAM algorithm.

6.3.3 Updated Landmarks to Observations ratio

Depending on the likelihood threshold for new landmarks, observations are considered
to be a new landmark if the likelihood for any possible association is below this

100

6.3 Statistics

threshold. So the runtime heavily depends on this threshold, because new Landmarks
deeply affect the runtime in the long run.

To reflect this dependency the number of all Landmarks nt is compared to the number
of Observations zt and a coefficient nt·m

zt
, normalized by the number of Particles M ,

is calculated.

Figure 6.7: The ratio of associated Landmarks nt and Observations zt, normalized by the
number of Particles M , plotted for multiple likelihood thresholds for new Landmarks. The
curves being so close shows that the Landmarks are good associated with the Observations.

That the ratios are so similar for all tested thresholds shows that the Observations
are very close to the previous points in space where now is a Landmark saved and the
next Landmark the current Observation could be confused with is far away enough
to not have many ambiguous associations. This is intended, so the matching is as
reproducible as possible. If the threshold is selected much higher than 0.01 or much
lower than 0.005 either all Observations are matched or no associations are found.

101

6 Discussion

6.4 Relaxation

Relaxation is not a SLAM algorithm or in any way connected to FastSLAM. It was
implemented to smooth the jumps of a trajectory, which FastSLAM is not made
for. One of the scenarios it was made for is when the GPS information could not
be received for a long period of time and the new GPS position after leaving the
tunnel does not match the position estimated by the INS. Figure 6.8(a) shows a map
generated at the end of the Elbtunnel in Hamburg. The Elbtunnel is 3325 m long
and is therefore a very long track without a chance of retrieving a GPS position of
the vehicle. One recognizes the significant jump after about 100 m when exiting
the tunnel. Although the INS attempts to incorporate the new GPS position slowly
(probably via Kalman filter), the resulting map is without further human intervention
useless for the 3D-HTRF project. Any automatic test if a heavy transport would fit
would come to the conclusion that the street is too narrow.

102

6.4 Relaxation

Figure 6.8: Maps when exiting the Elbtunnel before and after relaxation. A quite more
smooth course of the road can be seen.

Figure 6.8(b) shows the result of the relaxation algorithm when applied to a track of
about 300 m length. Of course the map still does not reflect reality but with regard
to the local accuracy it is much better than the original data. To get the best result
relaxation has to be done on the whole track in the tunnel (see chapter 7.2.5). For
the correction of small jumps as they were presented in the motivation of the Xsens

103

6 Discussion

(see fig. 1.5), relaxation is very useful as shown in figure 6.9. The computational cost
is low compared to relaxing large jumps of a few meters like the one of the Elbtunnel.

Figure 6.9: Data after using the relaxation algorithm as they are shown in figure 1.5

In FastSLAM the trajectory is determined by how well the current and the previous
scan’s landmarks match. This may be contrary to the odometry information. When
doing relaxation on the resulting trajectory the influence of the odometry information
is increased again and a good mixture of both is created.

A problem with the AppBase, that occurs is that when calculating a new position
there is a need of information from the future of this position. This means that the
system must wait for this next position, and thus delays the calculation. The data
from the scanners has to be delayed as long as there are no generally valid time
stamps.

6.5 Summary

For the evaluation purposes of this thesis the FastSLAM algorithm in its basic
version 1.0 is sufficient. To avoid problems caused by complex data structures and in
order to create a straightforward implementation which is easy to understand, most
design decisions were made in favor of comprehensible code over high performance.

The evaluation shows that using FastSLAM on the current hardware setup of the
3D-HTRF project works and produces maps, in contrast to the ICP algorithm as

104

6.5 Summary

tested with the SLAM-6D implementation. But the evaluation also shows that the
current hardware setup is not suitable for improving the maps accuracy further than
the level currently achieved already.

According to the statistics our FastSLAM implementation shows the expected runtime
behavior of O(M ·N). The memory usage is within acceptable limits as well and
does not exceed the 3 GB limit of a 32 bit computer system. In other scenarios,
where more scan points are processed, a more efficient data structure can be of profit.

For the rough trajectory of the Xsens MTi-G INS, which causes abrupt edges every
about 10 cm in the maps, relaxation does help very well. The trajectory can be
smoothed and the quality of the maps is improved significantly.

105

Outlook & Conclusion

7
This chapter deals with the question how further improvements could look like. First
a view on the timing and the design of the hardware is taken. Then some implemen-
tation changes are proposed, which we expect to solve the problems encountered in
this work. The last section is the conclusion of our work.

7.1 Hardware Suggestions

FastSLAM has been shown to basically work on the hardware setup, but the perfor-
mance is not good enough to improve the map over their current quality. To enhance
the results of the FastSLAM algorithm on the hardware of the 3D-HTRF project,
some hardware and low level preprocessing changes can be made. When spend-
ing more attention to the timing of the system’s data and changing the mounting
positions of the Laser Range Finders, significant improvements should be achievable.

7.1.1 LRF mounting positions

The initial goal of 3D-HTRF was not preprocessing of the scan data and the mounting
positions were chosen with the believe that a very precise position estimate will be
provided by an external system. In this context having multiple scans layered on
top of each others might make little errors stand out more because clear edges might
smudge out. The resulting sensor arrangement (sect. 2.1) only provides little overlap
which is being tried to compensate by making the slices overlap (sect. 5.3.5).

For mapping purposes most approaches including FastSLAM use a sensor configura-
tion covering an area as large as possible at once. As a result many landmarks are
found per scan and can be utilized for matching. The more landmarks are found
and associated between scans, the better the triangulation gets and the higher is
the confidence in the matching hypothesis. To profit from a better overlap the
sensors mounting positions need to be changed, e.g. as horizontal scanners in the cars
bumpers covering the whole region in front of and behind the car. Ideally the LRFs
are tilted up and down to cover as much area as possible or, even better, multi-layer

107

7 Outlook & Conclusion

scanners are used and no slicing has to be done anymore. In any case complete
3D point clouds are recorded and matching will work better.

To go a step further splitting up the task of localization and mapping can help. The
LRFs in the car’s bumpers, as suggested above, are only used for the SLAM and the
current LRFs are kept in their configuration, but their data is only saved for later
building the maps with the SLAM-improved position data.

7.1.2 Accuracy of timing

Currently the associations between position data and scan data is constructed from
the order of appearance in the input channels only. No timestamps are used and no
model on delay and its jitter is applied to better correlate scan data and positions.
Conducting experiments to determine the delay and jitter of the scanners and INSs
and applying a model to correct the timing of the data might improve the accuracy
of the resulting maps, especially with regards to the accumulation of errors.

When moving at 80 km/h and the LRFs scanning at 50 Hz, a vehicle travels

80km/h · 1
3.6

m/s
km/h

· 0.02s ≈ 44 cm within one scan and thus distorts the line of
scan points from the LRF, which takes this long to be measured. Correcting these
distortions will improve the position of individual scan points. Additionally the angle
speed when turning should be taken into consideration, because for far away scan
points on the outside of a curve the effect is amplified.

The problem when trying to improve the timing of the 3D-HTRF system is that
there are multiple clocks. One is in the INS, one in each LRF and another one in the
computer that collects all the data. The data transmission between this computer
and the scanners as well as the connection to the INS is via ethernet and a TCP/IP
protocol which has no timing guarantees. On the other hand we can assume that
when the transmission is the only one on the bus the time delay is very small. So
when minding the postprocessing time, especially of the LRFs, there is a good change
to improve the timing and reducing the position and measurement errors.

The second possibility is to use some synchronization channels. The INS retrieves
its time via GPS and has a sync output which sends a precise impulse. This can be
used by the LRFs to synchronize with. Each LRF itself has a clock which uses ticks,
but has no knowledge about the current time. A tick is generated when the rotating
mirror is in a typical position which may be given by the user. When the scanner
is synchronized the given sync signal is at the same time as the tick. Now a time
from the INS can be assigned to the messages from the LRF. When the computer
has the same capabilities like for example a real-time operating system, the whole
system is timed. If the pose information between the INS messages is interpolated
for each scan point where the vehicle pose is known, each scan point can be precisely
positioned.

108

7.2 Improving FastSLAM

The jitter of the data stream from the LRFs can be reduced by applying a Kalman
filter on the data packets to estimate the real time they were sent. This way
fluctuations in the TCP/IP data streams can be balanced out.

7.1.3 Accurate determination of model errors

With elaborate measurement methods the errors of all the sensors can be determined
accurately and used for the error models of the FastSLAM algorithm. There are two
error models that influence FastSLAM. The first is the distance and angular error of
the LRFs for the extended Kalman filter’s Landmark update and the positioning
error of the INSs for the Particle filter’s pose estimation step.

Determining these errors is a lot of tedious work since they are comparatively small.
For a high precision application this work might be justified and prove helpful, but in
the most cases assumptions taken from the data sheets of the sensors are sufficient.

7.2 Improving FastSLAM

There are many ways in which the FastSLAM algorithm can be improved. This
chapter introduces some approaches which could further improve the results of
FastSLAM on the 3D-HTRF data. These are other data structures for a faster access
and other algorithms for the only roughly outlined parts of the FastSLAM algorithm.

7.2.1 Landmark detection

Optimizing the landmark detection is one of the points with the highest potential for
improving the FastSLAM results. If the additional information, which is given by the
environment, is used one can predict where the next landmark should be observed or
landmarks can be classified as certain types like trees, houses, street markings or
similar. This classification can be used to associate the observed landmarks with the
saved landmarks easier and faster.

Scale-Invariant Feature Transform (SIFT)

In 1999 David Lowe developed an algorithm to describe features in images which
are invariant to scaling, translation, and rotation and minimally affected by noise
and small distortions [Low99]. Such a feature is very robust and can be used as a
landmark in SLAM algorithms. Some of the works mentioned in chapter 3 actually
use SIFT features for SLAM, most prominently [SLL05].

SIFTs were developed for images and are based on the difference-of-Gaussian function.
For each axis multiple Gaussian kernels with different σ-values are compared and

109

7 Outlook & Conclusion

the differences can be described by a vector which identifies this SIFT. Calcuating
thousand of SIFTs takes only very little time. SIFT descriptors can be compared
very efficiently and SIFTs describing the same object in different images can be
identified an associated. Since calculating the likelihoods of landmark and observation
associations is a very computational time consuming task using SIFTs could speed-up
FastSLAM substantially.

The above properties make SIFTs a candidate for landmark extraction in FastSLAM.
If the echo pulse width of the LRF is interpreted as greyscale intensity information
SIFTs could be used on the scanner data. To use them in the context of this thesis’
work some more adaptations need to be made. First of all either the three-dimensional
point clouds have to be projected on a 2D plane or the SIFT-definition has to be
extended to 3D similar to [SAS07]. Additionally the calculation of the importance
weights does rely on the existence of likelihood values for the associations between
landmarks and observations and a new method for either retrieving likelihood values
from SIFTs or another measurement for the importance weights has to be found.

Alternatively Speeded Up Robust Features (SURFs) could be implemented as their in-
ventor claims they are even faster to compute while being as reliable as SIFTs [BTG06]

Street marking detection

Street markings in Germany are normed by the StVO. The width of guideline is set
on Autobahnen to 0.15 m and 0.12 m on all other roads. The length is not specified
explicitly, instead it depends on the speed limit of the road and is between 3 m and
6 m but the ratio from length of a line to the spacing between lines is on Autobahnen
1:2 and 1:1 on all other streets. This knowledge can help to match the measured
data with the map, for example because the end of the center line can be guessed
and matched with the ends of street markings found in the measurement data.

A possible approach would be to extract the street surface markings the way it
is already done in this work and then further process them. Intelligent clustering
with the knowledge of the above mentioned properties of the street markings can
isolate them from each other and be a first step to identifying them. When a street
marking has been isolated and identified its properties can be used for positioning
and orientation. For example the direction they are pointing in can be extracted
and the center of gravity of the street marking’s scan points can be calculated and
used as Landmark position.

For this to work a different sensor configuration is advisable, because right now
even the slices of combined scan planes are too small compared to the sizes of street
markings and they are cut off almost all the time and some slices do not contain any
street markings at all because they are too small.

110

7.2 Improving FastSLAM

7.2.2 Reducing calculation complexity and memory usage

The basic variant of the FastSLAM algorithm implemented is calculation intensive
and sufficient for an evaluation if the method works with the 3D-HTRF project.
When building a system for deployment and use with tracks of hundreds of kilometers
of length, the current implementation will reach its limits. Thus the outlines for
implementing a better performing variant of the FastSLAM algorithm are given here.

Using efficient data structures

Because the code should be easy to understand and to avoid mistakes caused by a
complex construction a simple data structure is used. To get a better performance
some changes could be made. Especially the implementation of the likelihood-table
is very inefficient. A Matrix is not optimized for accessing its cells and a lot of time
is spent searching and accessing elements in a matrix of the size of observations
times saved landmarks. A better data structure that allows faster access as e.g.
hashtables could improve the runtime of this FastSLAM implementation. Also
the number of distance comparisons and likelihood calculations could be decreased
significantly or even avoided completely if the data structure used would support a
nearest neighborhood search and access.

A further approach for efficient data structures is to save only the new data and avoid
redundancy. Every particle has its own landmark map. Because in every resampling
step new particles are produced by copying an old one and rather large parts of
the maps are saved twice or more often. To prevent this a tree structure could be
used. When doing this, first the number of steps to access a landmark is the height
of the tree h = logN with N = number of landmarks and second the pointer to a
subtree could be used to share them between more particles. When doing FastSLAM
over a longer time period this will save a bulk of the needed memory. A problem of
this approach is the garbage collection because old particles that normally would be
deleted by the resampling algorithm may contain subtrees that are still needed. So
there is a need to remember how many pointers point on a subtree.

In general many calculations are very similar within every particle and repeated very
often. It might proof useful to invest some research into caching computation results
to minimize the total number of calculations necessary.

Parallelization

As mentioned in the above section many calculations are similar and repeated within
every particle, they are also independent. Ideally all particles can be calculated
completely in parallel and thus use the full potential of modern CPUs with multiple
cores. Since FastSLAM typically uses hundreds of Particles (more on how to determine

111

7 Outlook & Conclusion

a good number of Particles can be found in [BNN06]), it would even be possible
to distribute the work over multiple computers. This can be interesting for e.g.
semi-autonomous systems where the vehicle sends its sensor data to remote servers
which help computing the map.

Advantages of a quick FastSLAM algorithm

If the execution time can be reduced to enable online use of the algorithm, the map
will be ready right when the car finished driving along the suggested route. Apart
from reducing costs by saving on processing time, a live created map might help
detecting problematic areas and the driver can search for an alternative route ad-hoc
without waiting for the resulting map after finishing his route. This way redoing
whole scouting drives to find alternative routes can be avoided and a lot of time can
be saved.

7.2.3 Probabilistic extensions

Thrun’s FastSLAM 2.0 is an extension of the FastSLAM 1.0 algorithm using proba-
bilistic methods. The main methods to move towards a FastSLAM 2.0 implementation
are outlined in this section.

Landmark association

The likelihood values are crucial to the results of FastSLAM. It is used to associate
observations to landmarks by choosing the landmark with the highest likelihood value.
A different approach is to choose the landmark by interpreting the likelihood value
as the probability to associate the current observation with the related landmark.
This suggestion is mentioned in the book FastSLAM [MTS07]. This interpretation
makes sense only when more possibilities will be investigated. This leads to higher
computational costs.

Likelihood value

In our work the likelihood is determined by calculating the value of a normal
distribution as it is done in [MTS07]. This forces some problems as noted in
sect. 5.4.5. The mathematically correct method would be to combine the normal
distribution of the landmark with the normal distribution of the observation. The
integral of the resulting distribution would be the correct likelihood value.

112

7.2 Improving FastSLAM

Resampling method

In the description of the FastSLAM algorithm the resampling method is discussed
briefly only. But the method used can have a significant influence on the ratio between
resampled particles with high importance weights and low importance weights. If
this ratio is skewed towards the highly rated particles FastSLAM might suffer the
same problems like a traditional Kalman filter approach FastSLAM explicitly started
out to avoid and result in only a single hypothesis being sustained. On the other
hand if the resampling algorithm is selecting too many particles with a bad rating
the particle cloud representing all position hypothesis might spread out very thinly
and not cover the highly probable positions anymore.

Thus researching and implementing a different resampling method can change the
behavior and performance of the FastSLAM algorithm very much. In the book
Integrierte Navigationssysteme [Wen07] a resampling algorithm is presented that
can evaluate whether resampling is necessary at all, which of course can save lots of
processing time.

7.2.4 Output

When the AppBase finished sending all data from its source it starts calling the
destructor of all worker objects that finished processing all incoming data. Unfortu-
nately writing out the latest and final maps calculated by the FastSLAM algorithm
in the destructor fails. As a workaround all maps are written to disk in a specifiable
interval. The maps written to disk contain billions of lines of point coordinates
and color information and easily reach several hundred megabytes per file which
takes a while to write to the harddrive. Reducing the frequency at which to write
out the maps will speed-up the execution of the program vastly. In combination
with parallelization (sect. 7.2.2) a further improvement in execution speed can be
achieved by placing the function for writing the data to disk in its own thread. With
appropriate locking the data in the process of being written out can be read for
resampling and the newly sampled particles can already be processed.

7.2.5 Relaxation

Relaxation has delivered the results we had hoped for but for large deviations they
can be improved. As shown in section 6.4 the smoothing of the exit of the Elbtunnel
is probably good enough for the case of HTRF but for a good global map it has
to be better. The Problem is that the jump is too large which is because the time
during which no GPS signal was received was very long. If we would knew the size
of the jump we could react, spend more time and adjust the parameters. So when
knowing the state of the GPS receiver the last position before entering the tunnel

113

7 Outlook & Conclusion

can be taken by relaxation as a starting point which can be highly trusted. The
point after leaving the tunnel when first getting a GPS update would be the last one
used in the algorithm. Based on the number of the points the parameters could be
guessed. The more points the more computing time should be used on relaxation.

7.3 Conclusion

In this work we examined the 3D-HTRF project for creating highly accurate maps
for scouting heavy transport routes.

The motivation started with an experiment to assess the hardware used and test the
suitability of a well known and scientifically tried SLAM algorithm called SLAM-6D of
the ICP family. The results showed that the three available position data sources are
of varying accuracy. The worst position information are the vehicle data taken from
the CAN bus of the car, which is expected as it is derived through dead-reckoning and
errors accumulate. Of the two INSs the cheaper Xsens MTi-G is performing better
than the dead-reckoning from the car’s sensors, but the costly Oxford Technical
Solutions RT3040 using the highly accurate satellite based differential GPS naturally
delivers the best position information.

No matter which position information was used, the SLAM-6D algorithm was not
able to match the simple, straight test track properly (fig. 1.6). This is probably
due to the basic principle of ICP which only allows for one hypothesis of the state
of the world to be followed. Consequently errors made when little information was
available cannot be corrected later when more information becomes available.

FastSLAM is a combination of EKFs and a particle filter which use probabilistic
methods to follow multiple hypotheses. Using FastSLAM the problems of an ICP
algorithm can be overcome, but FastSLAM had to be adopted and implemented for
the three dimensional case as present in the 3D-HTRF project and the hardware
used. This was done and described in the main part of this thesis.

The FastSLAM implementation was tested and evaluated to find out

1. if the 3D-HTRF hardware is producing data suitable for the application of a
FastSLAM algorithm for improving the generated maps

2. if the costs of an INS can be saved by improving maps created from the CAN
data of the car with comparable results

3. if the cheaper Xsens MTi-G in combination with FastSLAM could replace the
expensive Oxford Technical Solutions RT3040 INS.

It was shown that the adaptation of the 3D-HTRF data for FastSLAM basically
works by combining scan data to create artificial point clouds, named slices. But
the results for improving the maps are not satisfactory at all, which is due to the
mounting positions of the LRFs. Even with the slicing applied the point clouds are

114

7.3 Conclusion

not sufficient for creating highly accurate maps using FastSLAM. More Landmarks
associated with each vehicle pose are needed for better triangulation and matching.
Suggestions were made on how to change the 3D-HTRF hardware to achieve the
above goals.

The software of the 3D-HTRF project is proprietary and protected by copyrights
and the data format used is a proprietary binary format. Thus an exporter had to
be written to make the data necessary to examine the results available and a viewer
to be able to visualize the results. Additionally, to further improve the data of the
Xsens MTi-G, a relaxation algorithm was implemented to straighten out periodic
leaps in the position data. These errors most likely result from a too quick correction
step of the INS when determining a new GPS position. The tests showed that these
leaps can be corrected using our relaxation algorithm.

The FastSLAM algorithm implemented here is a simple and easy variant tailored for
evaluation purposes. FastSLAM has a huge potential for runtime and memory usage
improvements which will allow the algorithm to work on large maps of hundreds of
kilometers.

With these results a way for the 3D-HTRF project to save costs and improve map
quality in the future is demonstrated.

115

Acknowledgement

Writing a diploma thesis is a huge effort representing the final highpoint of a students
degree. We are very thankful for all the support we received to make this experience
as remarkable as it was. First of all thanks to our supervisors Prof. Dr. Jianwei
Zhang1 Head of the group Technical Aspects of Multimodal Systems (TAMS) at
the University of Hamburg and Dr. Kay Fürstenberg, Senior Manager Research
Activities at SICK AG2 for making this thesis possible for us and providing us with
everything necessary to conclude this work.

Many thanks go to our thesis advisors Denis Klimentjew and Daniel Westhoff who
gave us important input and guidance which helped to shape the outline of our work.
They were always there for us when we needed help and advice.

Last but not least we want to thank our friends and family for their moral support
and looking over our work to point out all those little things we never would have
noticed.

� Hannes Bistry (proofreading)

� David Dittman (proofreading)

� Julian Fietkau (proofreading)

� Monika Nerlich-Girlich (for being a patient and understanding mother)

� Johann Wegener (delicious coffee)

1http://tams-www.informatik.uni-hamburg.de/people/zhang/
2http://www.sick.com/

117

http://tams-www.informatik.uni-hamburg.de/people/zhang/
http://www.sick.com/

Eidesstattliche Erklärung Jan Girlich

Ich versichere, dass ich die vorstehende Arbeit selbstständig und ohne fremde Hilfe
angefertigt und mich anderer als der im beigefügten Verzeichnis angegebenen Hilfsmit-
tel nicht bedient habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichun-
gen entnommen wurden, sind als solche kenntlich gemacht.

Ich bin mit einer Einstellung in den Bestand der Bibliothek des Fachbereiches
einverstanden.

Hamburg, den

Jan Girlich
Matr.- Nr.: 5595529

119

Eidesstattliche Erklärung Jan Gries

Ich versichere, dass ich die vorstehende Arbeit selbstständig und ohne fremde Hilfe
angefertigt und mich anderer als der im beigefügten Verzeichnis angegebenen Hilfsmit-
tel nicht bedient habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichun-
gen entnommen wurden, sind als solche kenntlich gemacht.

Ich bin mit einer Einstellung in den Bestand der Bibliothek des Fachbereiches
einverstanden.

Hamburg, den

Jan Gries
Matr.- Nr.: 5401333

121

Aufteilung der Gruppenarbeit

Da diese Arbeit von Jan Girlich und Jan Gries gemeinsam erstellt wurde, werden im
Folgenden einzelne Kapitel dem jeweiligen Autor zugeordnet.

Von Jan Girlich, Matr.- Nr.: 5595529, erstellte Kapitel: 1.1, 1.2, 1.4-1.8, 2.3-3.2, 3.7,
3.8, 4.3, 4.4, 4.7-5.2, 5.4, 6.2, 7.2.1, 7.2.2

Von Jan Gries, Matr.- Nr.: 5401333, erstellte Kapitel: 1.3, 2.1, 2.2, 3.3-3.5, 3.9-4.2,
4.5, 4.6, 5.3, 5.5-6.1, 6.3-7.1, 7.2.3-7.2.5

Die hier nicht aufgeführten Textpassagen, genauso wie der gesamte Quellcode, wurde
in Zusammenarbeit erstellt beziehungsweise programmiert.

123

Bibliography

[aE01] B.A. am Ende. 3D mapping of underwater caves. Computer Graphics
and Applications, IEEE, 21(2):14–20, 2001.

[AHB87] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-Squares fitting of two
3-D point sets. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-9(5):698–700, 1987.

[ATS02] K. O Arras, N. Tomatis, and R. Siegwart. Multisensor on-the-fly local-
ization using laser and vision. volume 1, page 462–467, 2002.

[BD06] T. Bailey and H. Durrant-Whyte. Simultaneous localization and
mapping (SLAM): part II. Robotics & Automation Magazine, IEEE,
13(3):108–117, 2006.

[BEL+08] D. Borrmann, J. Elseberg, K. Lingemann, A. N\üchter, and J. Hertzberg.
Globally consistent 3D mapping with scan matching. Robotics and
Autonomous Systems, 56(2):130–142, 2008.

[BJ05] R. S Bucy and P. D Joseph. Filtering for stochastic processes with
applications to guidance. Chelsea Pub Co, 2005.

[BLO+09] L. M. Bergasa, M. E. Lopez, M. Ocana, R. Barea, and D. Schleicher. Real-
Time hierarchical outdoor SLAM based on stereovision and GPS fusion.
IEEE Transactions on Intelligent Transportation Systems, 10(3):440–452,
2009.

[BM92] Paul J. Besl and Neil D. McKay. A method for registration of 3-D
shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256, 1992.

[BNL+03] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller.
An atlas framework for scalable mapping. pages 1899–1906, Taipei,
Taiwan, 2003.

[BNN06] T. Bailey, J. Nieto, and E. Nebot. Consistency of the FastSLAM
algorithm. In Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, page 424–429, 2006.

[BTG06] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust
features. Computer Vision–ECCV 2006, page 404–417, 2006.

[BZB+10] Paulo Borges, Robert Zlot, Michael Bosse, Stephen Nuske, and Ashley
Tews. Vision-based localization using an edge map extracted from 3D
laser range data. pages 4902–4909, Anchorage, AK, USA, 2010.

125

Bibliography

[Car08] J. Carlson. Mapping Large Urban Environments with GPS-Aided SLAM.
PhD thesis, Citeseer, 2008.

[CN06] D. M Cole and P. M Newman. Using laser range data for 3D SLAM in
outdoor environments. page 1556–1563, 2006.

[CN07] M. Cummins and P. Newman. Probabilistic appearance based navigation
and loop closing. In Robotics and Automation, 2007 IEEE International
Conference on, page 2042–2048, 2007.

[Dav03] Andrew J Davison. Real-time simultaneous localisation and mapping
with a single camera. null, pages 1403—1410, 2003.

[DB06] H. Durrant-Whyte and T. Bailey. Simultaneous localisation and mapping
(SLAM): part i the essential algorithms. Robotics and Automation
Magazine, 13(2):99–110, 2006.

[DFBT99] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on, volume 2, page 1322–1328, 1999.

[DMS00] T. Duckett, S. Marsland, and J. Shapiro. Learning globally consistent
maps by relaxation. In Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, volume 4, page 3841–3846,
2000.

[DRN96] H. Durrant-Whyte, D. Rye, and E. Nebot. Localisation of automatic
guided vehicles. Robotics Research: The 7th International Symposium
(ISRR 1995), 1996.

[ED08] E. Eade and T. Drummond. Unified loop closing and recovery for real
time monocular slam. In British Machine Vision Conference, 2008.

[Eis02] Stephan Eisenlauer. Bestimmung der fahrzeugeigenbewegung auf basis
von 2D entfernungsprofilen eines laserscanners, 2002.

[EM92] S. P Engelson and D. V McDermott. Error correction in mobile robot
map learning. In Robotics and Automation, 1992. Proceedings., 1992
IEEE International Conference on, page 2555–2560, 1992.

[ESLW06] R. M Eustice, H. Singh, J. J Leonard, and M. R Walter. Visually
mapping the RMS titanic: Conservative covariance estimates for SLAM
information filters. The International Journal of Robotics Research,
25(12):1223, 2006.

[FLD05] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localization and mapping. Robotics, IEEE Transactions
on, 21(2):196–207, 2005.

[GRS+08] G. Grisetti, L. Rizzini, C. Stachniss, E. Olson, and W. Burgard. On-
line constraint network optimization for efficient maximum likelihood

126

Bibliography

map learning. In Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, page 1880–1885, 2008.

[HBFT03] D. Hahnel, W. Burgard, D. Fox, and S. Thrun. An efficient fastslam
algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. pages 206–211, Las Vegas, Nevada, USA,
2003.

[HBT03] D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3D models
of indoor and outdoor environments with a mobile robot. Robotics and
Autonomous Systems, 44(1):15–27, 2003.

[HDB+10] D. Holz, D. Droeschel, S. Behnke, S. May, and H. Surmann. Fast 3D
perception for collision avoidance and SLAM in domestic environments.
2010.

[Hus10] S. F Husain. Evaluation of methods for 3D environment reconstruction
with respect to navigation and manipulation tasks for mobile robots.
2010.

[JD06] P. Johnson and M. Danis. Unmanned aerial vehicle as the platform for
lightweight laser sensing to produce sub-meter accuracy terrain maps
for less than $5/km2. Mech. Eng. Dept., Columbia Univ., New York,
2006.

[JMW+03] A. Jacoff, E. Messina, B. A Weiss, S. Tadokoro, and Y. Nakagawa. Test
arenas and performance metrics for urban search and rescue robots. In
Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, volume 4, page 3396–3403,
2003.

[Jot01] D. I.J Jotzo. Aktive landmarken zur positionsbestimmung von au-
tonomen fahrzeugen. TU Chemnitz, 2001.

[JU97] Simon J Julier and Jeffrey K Uhlmann. A new extension of the kalman
filter to nonlinear systems. 3068:182—193, 1997.

[K+60] R. E Kalman et al. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960.

[KBO+06] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian,
and M. E Munich. The vSLAM algorithm for robust localization and
mapping. page 24–29, 2006.

[Kon04] K. Konolige. Large-scale map-making. In PROCEEDINGS OF THE
NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, page
457–463, 2004.

[KS04] J. Kim and S. Sukkarieh. SLAM aided GPS/INS navigation in GPS de-
nied and unknown environments. In The 2004 International Symposium
on GNSS/GPS, Sydney, page 6–8, 2004.

127

Bibliography

[KS07] J. Kim and S. Sukkarieh. Real-time implementation of airborne inertial-
SLAM. Robotics and Autonomous Systems, 55(1):62–71, 2007.

[KSD+09] R. K\ümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,
C. Stachniss, and A. Kleiner. On measuring the accuracy of SLAM
algorithms. Autonomous Robots, 27(4):387–407, 2009.

[LALM07] R. Lakaemper, N. Adluru, L. J Latecki, and R. Madhavan. Multi
robot mapping using force field simulation. Journal of Field Robotics,
24(8-9):747–762, 2007.

[LM97] F. Lu and E. Milios. Robot pose estimation in unknown environments
by matching 2d range scans. Journal of Intelligent and Robotic Systems,
18(3):249–275, 1997.

[LNHS05] K. Lingemann, A. N\üchter, J. Hertzberg, and H. Surmann. High-speed
laser localization for mobile robots. Robotics and Autonomous Systems,
51(4):275–296, 2005.

[Low99] D. G Lowe. Object recognition from local scale-invariant features. In
iccv, page 1150, 1999.

[LSNH04] Kai Lingemann, H. Surmann, A. Nuchter, and J. Hertzberg. Indoor and
outdoor localization for fast mobile robots. pages 2185–2190, Sendai,
Japan, 2004.

[Mad49] W. G Madow. On the theory of systematic sampling, II. The Annals of
Mathematical Statistics, 20(3):333–354, 1949.

[Men07] Marco Mengelkoch. Implementieren des FastSLAM Algorithmus zur
Kartenerstellung in Echtzeit. PhD thesis, Universität Koblenz, Landau,
2007.

[MFO+06] Aaron Morris, Dave Ferguson, Zachary Omohundro, David Bradley,
David Silver, Chris Baker, Scott Thayer, Chuck Whittaker, and William
Whittaker. Recent developments in subterranean robotics. Journal of
Field Robotics, 23(1):35–57, 2006.

[MR06] A. I Mourikis and S. I Roumeliotis. Analytical characterization of the
accuracy of slam without absolute orientation measurements. In Proc.
Robotics: Science and Systems Conf, August 2006.

[MSWS02] M. J Merrigan, E. R Swift, R. F Wong, and J. T Saffel. A refinement
to the world geodetic system 1984 reference frame. In Proceedings of
the ION-GPS-2002, 2002.

[MTKW02] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: a
factored solution to the simultaneous localization and mapping problem.
page 593–598, 2002.

128

Bibliography

[MTKW03] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In International Joint Conference
on Artificial Intelligence, volume 18, page 1151–1156, 2003.

[MTS07] M. Montemerlo, S. Thrun, and B. Siciliano. FastSLAM: A scalable
method for the simultaneous localization and mapping problem in robotics.
Springer Verlag, 2007.

[NCC+07] P. Newman, M. Chandran-Ramesh, D. Cole, M. Cummins, A. Harrison,
I. Posner, and D. Schroeter. Describing, navigating and recognising
urban Spaces-Building an End-to-End SLAM system. 2007.

[NCH06] P. Newman, D. Cole, and K. Ho. Outdoor SLAM using visual appearance
and laser ranging. page 1180–1187, 2006.

[NF06] S. M Nejad and K. Fasihi. A new design of laser phase-shift range
finder independent of environ-mental conditions and thermal drift. In
Proceedings of the 9th Joint Conference on Information Sciences, JCIS,
volume 2006, 2006.

[NGNT03] J. Nieto, J. Guivant, E. Nebot, and S. Thrun. Real time data association
for FastSLAM. volume 1, page 412–418, 2003.

[NLHS07] Andreas Nüchter, Kai Lingemann, Joachim Hertzberg, and Hartmut
Surmann. 6D SLAM—3D mapping outdoor environments. Journal of
Field Robotics, 24(8-9):699–722, 2007.

[NMTS05] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart. A comparison of
line extraction algorithms using 2D laser rangefinder for indoor mobile
robotics. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005
IEEE/RSJ International Conference on, page 1929–1934, 2005.

[NSL+04] A. Nüchter, H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun. 6D
SLAM with an application in autonomous mine mapping. In Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, volume 2, page 1998–2003, 2004.

[PRSF00] E. Prassler, A. Ritter, C. Schaeffer, and P. Fiorini. A short history of
cleaning robots. Autonomous Robots, 9(3):211–226, 2000.

[RFM10] R. Rouveure, P. Faure, and M. O. Monod. Radar-based SLAM without
odometric sensor. 2010.

[RL01] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.
In 3dim, page 145, 2001.

[SAS07] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor
and its application to action recognition. In Proceedings of the 15th
international conference on Multimedia, page 357–360, 2007.

129

Bibliography

[Sep74] T. O Seppelin. The department of defense world geodetic system
1972. Technical report, WORLD GEODETIC SYSTEM COMMITTEE
WASHINGTON DC, 1974.

[SH09] B. Steux and O. El Hamzaoui. CoreSLAM: a SLAM algorithm in less
than 200 lines of c code. Mines ParisTech-Center of Robotics, Paris,
2009.

[SHB04] C. Stachniss, D. Hahnel, and W. Burgard. Exploration with active loop-
closing for FastSLAM. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, vol-
ume 2, page 1505–1510, 2004.

[SLL05] S. Se, D. Lowe, and J. Little. Vision-based mobile robot localization
and mapping using scale-invariant features. volume 2, page 2051–2058,
2005.

[SM06] J. Z. Sasiadek and A. Monjazeb. A comparison between EKF-SLAM
and Fast-SLAM. 2006.

[SMDW11] Matthias R. Schmid, Mirko Mählisch, Jürgen Dickmann, and Hans-
Joachim Wünsche. Straight feature based Self-Localization for urban
scenarios. 2011.

[TBF05] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT Press,
Camebridge, MA, 2005.

[TDD+00] S. Thayer, B. Digney, M. Diaz, A. Stentz, B. Nabbe, and M. Hebert.
Distributed robotic mapping of extreme environments. In Proceedings
of SPIE, volume 4195, 2000.

[Thr02] S. Thrun. Particle filters in robotics. In Proceedings of the 17th Annual
Conference on Uncertainty in AI (UAI), volume 1, 2002.

[TNNL02] J. D Tardós, J. Neira, P. M Newman, and J. J Leonard. Robust
mapping and localization in indoor environments using sonar data. The
International Journal of Robotics Research, 21(4):311, 2002.

[TTW+04] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson,
D. Hahnel, D. Montemerlo, A. Morris, Z. Omohundro, et al. Autonomous
exploration and mapping of abandoned mines. Robotics & Automation
Magazine, IEEE, 11(4):79–91, 2004.

[Wen07] J. Wendel. Integrierte Navigationssysteme: Sensordatenfusion, GPS
und Inertiale Navigation. Oldenbourg Wissenschaftsverlag, 2007.

[Woo07] O. J Woodman. An introduction to inertial navigation. University of
Cambridge, Computer Laboratory, Tech. Rep. UCAMCL-TR-696, 2007.

[WSBC10] Jochen Welle, Dirk Schulz, Thomas Bachran, and Armin B. Cremers.
Optimization techniques for laser-based 3D particle filter SLAM. pages
3525–3530, Anchorage, AK, USA, 2010.

130

Bibliography

[Yam04] B. Yamauchi. PackBot: a versatile platform for military robotics. In
Proceedings of SPIE, volume 5422, page 228–237, 2004.

[Yia93] P. N Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms, page 311–321, 1993.

131

FastSLAM 1.0 pseudo code

A
This is the pseudo code by Montemerlo and Thrun [MTS07] explaining how Fast-
SLAM works. It is simplified in the regard that just one observation is taken at
every time step and leaves the landmark detection for the reader to fill in.

FastSLAM(St−1, zt, Rt, ut)
St = Saux = ∅
for m = 1 to M

retrieve m-th particle //loop: all particles〈
s
[m]
t−1, N

[m]
t−1, µ

[m]
1,t−1,Σ

[m]
1,t−1, . . . , µ

[m]

N
[m]
t−1,t−1

,Σ
[m]

N
[m]
t−1,t−1

〉
from St−1

draw s
[m]
t ∼ p

(
st
∣∣s[m]
t−1, ut

)
//sample new pose

for n = 1 to N
[m]
t−1 //loop over potential data associations

Gθ,n = ∇θng (θn, st)
∣∣
θn=µ

[i]
n,t−1;st=s

[i]
t

ẑn,t = g
(
s
[m]
t , µ

[m]
n,t−1

)
Zn,t = Gθ,nΣ

[m]
n,t−1G

T
θ,n +Rt

p
[m]
n,t =

∣∣2πZn,t∣∣− 1
2 exp

{
−1

2
(zt − ẑn,t)T Z−1n,t (zt − ẑn,t)

}
end for
p
[m]

N
[m]
t−1+1,t

= p0

n̂t = argmaxn p
[m]
n,t or draw n̂t with prob. ∝ p

[m]
n,t //pick data assoc.

if n̂t = N
[m]
t−1 + 1 //is new feature?

N
[m]
t = N

[m]
t−1 + 1

µ
[m]
n̂t,t

= g−1
(
s
[m]
t , ẑn̂t,t

)
Σ

[m]
n̂t,t

=
(
GT
θ,n̂t

R−1Gθ,n̂t

)−1
else //or is a known feature?

N
[m]
t = N

[m]
t−1

Kn̂t,t = Σn̂t,t−1G
T
θ,n̂t

Z−1n̂t,t

µ
[m]
n̂t,t

= µ
[m]
n̂t,t−1 +Kn̂t,t (zt − ẑn̂t,t)

Σ
[m]
n̂t,t

= (I −Kn̂t,tGθ,n̂t) Σ
[m]
n̂t,t−1

133

A FastSLAM 1.0 pseudo code

end if
for n = 1 to N

[m]
t do //unobserved features

if n 6= n̂t
µ
[m]
θn,t

= µ
[m]
θn,t−1

Σ
[m]
θn,t

= Σ
[m]
θn,t−1

end if
end for
w

[m]
t = p

[m]
n̂t,t

//save weighted particle

add
〈
s
[m]
t , N

[m]
t , µ

[m]
1,t ,Σ

[m]
1,t , . . . , µ

[m]

N
[m]
t ,t

,Σ
[m]

N
[m]
t ,t

, w
[m]
t

〉
to Saux

end for
for m = 1 to M //resample

draw random particle from Saux with probability ∝ w
[m]
t

add new particle to St
end for
return St

134

AppBase configuration

B
The AppBase is configured using XML files describing the workers used and the
dataflow. This is the file used for the FastSLAM implementation.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!DOCTYPE appbaseconf SYSTEM "appbaseconf.dtd">

3 <appbaseconf>

4 <system/>

5 <processinggraph>

6 <configlist>

7 <config type="SOURCE" name="SOURCE">

8 <param name="AbortOnOverflow">false </param>
9 </config>

10 <config type="DRAIN" name="DRAIN">

11 <param name="EnableBuffering">false </param>
12 </config>

13 <config type="SliceWorker" name="Slicing">

14 <param name="numberOfScansInSlice">20</param>

15 <param name="numberOfScansOverlap">15</param>

16 <param name="DeviceID">42</param>

17 <param name="GroundLabeled">true</param>
18 </config>

19 <config type="SliceWorker" name="fullSlicing">

20 <param name="numberOfScansInSlice">20</param>

21 <param name="numberOfScansOverlap">5</param>

22 <param name="DeviceID">42</param>

23 <param name="GroundLabeled">false </param>
24 </config>

25 <config type="RoadSurfaceRecognitionWorker" name="RoadBorderRec">

26 <param name="maxDifStreet">0.22 m</param>

27 </config>

28 <config type="EPWAnalyzeWorker" name="EPWRec">

29 </config>

30 <config type="ScanEPWCutWorker" name="ScanEPWCutWorker">

31 <param name="Scanner1_min">0.16 m</param>

32 <param name="Scanner2_min">0.10 m</param>

33 <param name="Scanner3_min">0.16 m</param>

34 </config>

35 <config type="SLAMWorker" name="Fastslam">

36 <param name="DeviceID">42</param>

37 <param name="maxNumOfParticles">10</param>

38 <param name="AlphaYaw1">0.001</param>

39 <param name="AlphaPitch1">0.001</param>

40 <param name="AlphaYaw2">0.001</param>

41 <param name="AlphaPitch2">0.001</param>

42 <param name="AlphaRoll">0.001</param>

43 <param name="AlphaTrans">0.001</param>

44 <param name="FYaw1">0</param>

45 <param name="FYaw2">0</param>

46 <param name="Threshold">0.001</param>

135

B AppBase configuration

47

48 </config>

49 </configlist>

50 <connectionlist>

51 <connection from="SOURCE" type="Scan" to="fullSlicing"/>

52 <connection from="fullSlicing" type="Scan" to="Fastslam"/>

53 <connection from="SOURCE" type="Scan" to="RoadBorderRec"/>

54 <connection from="RoadBorderRec" type="Scan" to="EPWRec"/>

55 <connection from="EPWRec" type="Scan" to="ScanEPWCutWorker"/>

56 <connection from="ScanEPWCutWorker" type="Scan" to="Slicing"/>

57 <connection from="Slicing" type="Scan" to="Fastslam"/>

58 <connection from="Slicing" type="Scan" to="DRAIN"/>

59 <connection from="SOURCE" type="CANMessage" to="DRAIN"/>

60 <connection from="SOURCE" type="VehicleState" to="Slicing"/>

61 <connection from="Slicing" type="VehicleState" to="DRAIN"/>

62 <connection from="SOURCE" type="Image" to="DRAIN"/>

63 <connection from="SOURCE" type="PositionWGS84" to="Slicing"/>

64 <connection from="SOURCE" type="PositionWGS84" to="fullSlicing"/>

65 <connection from="Slicing" type="PositionWGS84" to="Fastslam"/>

66 <connection from="Slicing" type="PositionWGS84" to="DRAIN"/>

67 </connectionlist>

68 </processinggraph>

69 </appbaseconf>

136

Preprocessing workers

C
This appendix lists the sourcecode of all the workers used for preprocessing the scan
and position data before feeding it to the FastSLAM worker.

C.1 Street border cutter

Almost all streets have a curb which can be detected easily and used as a line for
cutting off the scanpoints beyond the streets.

1 // RoadSurfaceRecognitionWorker .hpp
2 // created : 2011/01/26
3 // author : Jan Gries
4

5 #ifndef RoadSurfaceRecognitionWorker_HPP

6 #define RoadSurfaceRecognitionWorker_HPP

7

8 // includes for class generation
9 #include "ibeobasic/ibeobasicdecl.hpp"

10 #include <IbeoAPI/Configurable.hpp>

11 #include "ibeograph/Preferences.hpp"

12

13 // includes for drains and sources
14 #include "ibeograph/drain/ScanDrain.hpp"

15 #include "ibeograph/source/ScanSource.hpp"

16

17 // includes for data types .
18 #include <IbeoAPI/Scan.hpp>

19 #include <vector>

20

21 class Scan;

22

23 #define RoadSurfaceRecognitionWorker_VERSION "1.0"

24

25 namespace ibeo {

26 namespace appbase {

27 namespace worker {

28

29 /**
30 * This worker detects the curb of a street and cuts off a l l scanpoints
31 * beyond the detected curbline .
32 *

33 * Output Data: Filtered Scan object
34 *

35 * Author(s) : Jan Girlich
36 */
37 class IBEOBASICDECL RoadSurfaceRecognitionWorker : public Configurable

137

C Preprocessing workers

38 , public ibeo::appbase::drain::ScanDrain

39 , public ibeo::appbase::source::ScanSource

40 {

41 public:
42 /**
43 * Constructor
44 */
45 RoadSurfaceRecognitionWorker(const ibeo::Preferences& preferences, const std::string&

configBlockName);

46

47 /**
48 * destructor
49 */
50 virtual ~RoadSurfaceRecognitionWorker();

51

52 static const std::string& getDefaultTypeName() { return CONFIG_TYPE; }

53 virtual void setScan(Scan& scan);

54

55 // member variables
56 private:
57

58

59 void medianFilter3();

60 /** Name of the type of the configuration block for this f i l e . */
61 static const std::string CONFIG_TYPE;

62 f loat m_minZ;

63 f loat m_maxZ;

64 f loat m_maxDifStreet;

65 std::vector<size_t> m_deviceIDs;

66 std::vector<Scan::iterator> m_minScans;

67 std::vector<Scan::iterator> m_lastScans;

68 Scan m_currentScan;

69 Scan m_letzterScan;

70 };

71

72 } // worker
73 } // appbase
74 } // ibeo
75

76 #endif

1 // RoadSurfaceRecognitionWorker .cpp
2 // created : 2011/01/26
3 // author : Jan Gries
4

5 #include "RoadSurfaceRecognitionWorker.hpp"

6 #include <cmath>

7 #include <boost/circular_buffer.hpp>

8 #include "Point3D.hpp"

9

10 namespace ibeo{

11 namespace appbase{

12 namespace worker{

13

14 const std::string RoadSurfaceRecognitionWorker::CONFIG_TYPE = "RoadSurfaceRecognitionWorker";

15

16 RoadSurfaceRecognitionWorker::RoadSurfaceRecognitionWorker(const ibeo::Preferences& preferences,

const std::string& objectname)

17 : Configurable(getDefaultTypeName(), objectname)

18 {

19 define (new ParamLength ("minZ", m_minZ, "Minimum to keep on Z axis", "-0.3 m"));

20 define (new ParamLength ("maxZ", m_maxZ, "Maximum to keep on Z axis", "0.4 m"));

21 define (new ParamLength ("maxDifStreet", m_maxDifStreet, "Maximum slope of the street", "0.27 m"))

;

138

C.1 Street border cutter

22

23 // Load values from the config f i l e , f i l l them into our
24 // parameters , and throw an exception i f something was invalid .
25 fillValuesValidateOrExcept(preferences.findByTypeAndName(getDefaultTypeName(), objectname));

26 }

27

28 RoadSurfaceRecognitionWorker::~RoadSurfaceRecognitionWorker()

29 {

30 }

31

32 bool isTooHighOrLow(const ScanPoint& sp, f loat minZ, f loat maxZ)

33 {

34 return !((sp.getZ() > minZ) && (sp.getZ() < maxZ));

35 }

36

37 static bool hasSmallerY (const ScanPoint& P1, const ScanPoint& P2)

38 {

39 return (P1.getY() > P2.getY());

40 }

41

42 static bool hasSmallerHA (const ScanPoint& P1, const ScanPoint& P2)

43 {

44 return (P1.getHAngle() > P2.getHAngle());

45 }

46

47 static bool hasSmallerVA (const ScanPoint& P1, const ScanPoint& P2)

48 {

49 return (P1.getVAngle() > P2.getVAngle());

50 }

51

52 void RoadSurfaceRecognitionWorker::setScan(Scan& scan)

53 {

54 m_deviceIDs.clear();

55 m_minScans.clear();

56

57 i f (!scan.isVehicleCoordinates()){

58 bool success;

59 success = scan.transformToScannerCoordinates();

60 i f (!success){

61 traceError("") << "transformToVehicleCoordinates() failed";

62 return;
63 }

64 }

65

66 // create output scan without scanning points
67 Scan outputScan(scan);

68 outputScan.resize(0);

69

70 // create current scan with points near the ground
71 m_currentScan = Scan(scan);

72 m_currentScan.getPointList().clear();

73 std::remove_copy_if(scan.begin(), scan.end(), std::back_inserter(m_currentScan.getPointList()),

boost::bind(&isTooHighOrLow, _1, m_minZ, m_maxZ));

74

75 hasSmallerHA(*scan.getPointList().begin(),*scan.getPointList().begin());

76 hasSmallerY(*scan.getPointList().begin(),*scan.getPointList().begin());

77 hasSmallerVA(*scan.getPointList().begin(),*scan.getPointList().begin());

78 std::sort(m_currentScan.getPointListBegin(), m_currentScan.getPointListEnd(), hasSmallerY);

79

80 std::vector<ibeo::ScanPoint>::iterator iter;

81 //looking for device used
82 for (std::vector<ibeo::ScannerInfo>::iterator iterInfo = m_currentScan.getScannerInfos().begin();

iterInfo != m_currentScan.getScannerInfos().end(); ++iterInfo){

83 m_deviceIDs.push_back((size_t)iterInfo->getDeviceID());

84

139

C Preprocessing workers

85 bool foundID = false;
86 for (iter = m_currentScan.getPointList().begin(); iter != m_currentScan.getPointList().end()

; iter++){

87 i f (iter->getEchoNum() == 0){

88 i f ((size_t)(iter->getDeviceID()) == (m_deviceIDs.back())){

89 foundID =true;
90 break;
91 }

92 }

93 }

94 i f (!foundID) traceError("") << "no ScanPoint of Scanner in Infovector! \n";

95

96 m_minScans.push_back(iter);

97 }

98

99 //looking for starting point in the middle of the scan , because we assume that the car is on the
road

100 for (iter = m_currentScan.getPointList().begin(); iter!=m_currentScan.getPointList().end(); ++

iter){

101 i f (iter->getEchoNum() == 0){

102 size_t indexOfID;

103

104 bool foundID = false;
105 for (indexOfID=0; indexOfID != m_deviceIDs.size(); ++indexOfID){

106 i f (m_deviceIDs[indexOfID] == (size_t)(iter->getDeviceID())){

107 foundID =true;
108 break;
109 }

110 }

111 i f (!foundID) traceError("") << "ScanPoint of Scanner not in Infovector! \n";

112

113 i f ((m_minScans[indexOfID]->getZ()-0.05) * (m_minScans[indexOfID]->getZ()-0.05)*8 + fabs(

m_minScans[indexOfID]->getY()) > (iter->getZ()-0.05) * (iter->getZ()-0.05)*8 + fabs(iter

->getY())){

114 //−0.05 is typical for Seeland−Passat
115 m_minScans[indexOfID] = iter;

116 }

117 }

118 }

119

120 //looking for the boarder of the street starting at m minScan Pointer
121 size_t sizeOfCb = 16;

122 for(size_t indexOfID=0 ; indexOfID < m_minScans.size() ; ++indexOfID){

123 outputScan.getPointList().push_back(*m_minScans[indexOfID]);

124 size_t ready = 0;

125 boost::circular_buffer<std::vector<ibeo::ScanPoint>::iterator> cb(sizeOfCb);

126 for (size_t i=0; i< cb.capacity(); i++){

127 cb.push_back(m_minScans[indexOfID]);

128 }

129 int possibleCut = 0;

130 for (iter=m_minScans[indexOfID]-- ; iter>=(m_currentScan.getPointList().begin()) ;--iter){

131 i f (iter->getEchoNum() == 0){

132 i f (m_deviceIDs[indexOfID] == (size_t)(iter->getDeviceID())){

133 i f (ready < cb.size()){

134 cb.push_back(iter);

135 bool isOutOfRange = false;
136 for (size_t i=1; i<cb.size(); i++){

137 isOutOfRange = isOutOfRange || fabs(cb[i-1]->getZ()-cb[i]->getZ()) > (m_maxDifStreet *

2);

138 }

139 i f (isOutOfRange){

140 break;
141 }

142 ready++;

143 }

140

C.1 Street border cutter

144 else{
145 i f (ready == cb.size()){

146 for (size_t i=0; i<cb.size(); i++){

147 outputScan.getPointList().push_back(*cb[i]);

148 }

149 ready++;

150 }

151

152 // Calculation of tangent out of cbuffer
153 Point3D averagePointFront(0.0,0.0,0.0);

154 Point3D averagePointRear(0.0,0.0,0.0);

155 size_t divFront = 0;

156 size_t divRear = 0;

157

158 for (size_t i=0; i<cb.size(); i++){

159 i f (i< (cb.size()/2)) {

160 averagePointFront += cb[i]->toPoint3D();

161 divFront++;

162 }

163 else{
164 averagePointRear += cb[i]->toPoint3D();

165 divRear++;

166 }

167 }

168 averagePointFront /= divFront;

169 averagePointRear /= divRear;

170 double averageTangent = (averagePointRear.getZ() - averagePointFront.getZ()) / (

averagePointRear.getY() - averagePointFront.getY());

171 double newDivTangentPoint = iter->getZ() - (((iter->getY() - averagePointRear.getY()) *

averageTangent) + averagePointRear.getZ());

172

173 // loop termination condition calculation (find last scanpoint on road)
174 i f (std::fabs(newDivTangentPoint) > m_maxDifStreet){

175 i f (newDivTangentPoint > 0){

176 i f (possibleCut == 1) break;
177 possibleCut++;

178 }

179 else{
180 i f (possibleCut == -1) break;
181 possibleCut--;

182 }

183 }

184 else{
185 cb.push_back(iter);

186 possibleCut = 0;

187 outputScan.getPointList().push_back(*iter);

188 }

189 }

190 }

191 }

192 }

193 }

194

195 for(size_t indexOfID=0 ; indexOfID < m_minScans.size() ; ++indexOfID){

196 outputScan.getPointList().push_back(*m_minScans[indexOfID]);

197 size_t ready = 0;

198 boost::circular_buffer<std::vector<ibeo::ScanPoint>::iterator> cb(sizeOfCb);

199 for (size_t i=0; i< cb.capacity(); i++){

200 cb.push_back(m_minScans[indexOfID]);

201 }

202 int possibleCut = 0;

203 std::vector<std::vector<ibeo::ScanPoint>::iterator> cache;

204 for (iter=m_minScans[indexOfID]++ ; iter<(m_currentScan.getPointList().end()) ;++iter){

205 i f (iter->getEchoNum() == 0){

206 i f (m_deviceIDs[indexOfID] == (size_t)(iter->getDeviceID())){

141

C Preprocessing workers

207 i f (ready < cb.size()){

208 cb.push_back(iter);

209 bool isOutOfRange = false;
210 for (size_t i=1; i<cb.size(); i++){

211 isOutOfRange = isOutOfRange || fabs(cb[i-1]->getZ()-cb[i]->getZ()) > (m_maxDifStreet *

2);

212 }

213 i f (isOutOfRange){

214 break;
215 }

216 ready++;

217 }

218 else{
219 i f (ready == cb.size()){

220 for (size_t i=0; i<cb.size(); i++){

221 outputScan.getPointList().push_back(*cb[i]);

222 }

223 ready++;

224 }

225

226 // Calculation of tangent out of cbuffer
227 Point3D averagePointFront(0.0,0.0,0.0);

228 Point3D averagePointRear(0.0,0.0,0.0);

229 size_t divFront = 0;

230 size_t divRear = 0;

231

232 for (size_t i=0; i<cb.size(); i++){

233 i f (i< (cb.size()/2)) {

234 averagePointFront += cb[i]->toPoint3D();

235 divFront++;

236 }

237 else{
238 averagePointRear += cb[i]->toPoint3D();

239 divRear++;

240 }

241 }

242 averagePointFront /= divFront;

243 averagePointRear /= divRear;

244 double averageTangent = (averagePointRear.getZ() - averagePointFront.getZ()) / (

averagePointRear.getY() - averagePointFront.getY());

245 double newDivTangentPoint = iter->getZ() - (((iter->getY() - averagePointRear.getY()) *

averageTangent) + averagePointRear.getZ());

246

247 // loop termination condition calculation (find last scanpoint on road)
248 i f (std::fabs(newDivTangentPoint) > m_maxDifStreet){

249 i f (newDivTangentPoint > 0){

250 i f (possibleCut == 2) break;
251 possibleCut++;

252 cache.push_back(iter);

253 }

254 else{
255 i f (possibleCut == -2) break;
256 possibleCut--;

257 cache.push_back(iter);

258 }

259 }

260 else{
261 cb.push_back(iter);

262 possibleCut = 0;

263 while (!cache.empty()){

264 outputScan.getPointList().push_back(*(cache.back()));

265 cache.pop_back();

266 }

267 outputScan.getPointList().push_back(*iter);

268 }

142

C.1 Street border cutter

269 }

270 }

271 }

272 }

273 }

274

275 m_signalScan(outputScan);

276 }

277

278 // this function implements a low pass f i l ter , but is not used anymore
279 void RoadSurfaceRecognitionWorker::medianFilter3()

280 {

281 i f (m_currentScan.getPointList().size() < 3){

282 traceError("") << "not enough points in scan \n";

283 return;
284 }

285

286 for(size_t indexOfID=0 ; indexOfID < m_minScans.size() ; ++indexOfID){

287 // circular buffer with 2 times the f i r s t point of the scan to avoid null−pointer access
288 boost::circular_buffer<std::vector<ibeo::ScanPoint>::iterator> cb(3);

289 for (std::vector<ibeo::ScanPoint>::iterator iter = m_currentScan.getPointList().begin() ; iter

!= m_currentScan.getPointList().end(); ++iter){

290 i f (((size_t)iter->getDeviceID()) == ((size_t)m_deviceIDs[indexOfID])){

291 cb.push_back(iter);

292 cb.push_back(iter);

293 }

294 }

295 boost::circular_buffer<double> tempZ(2);

296 tempZ.push_back(cb[0]->getZ());

297 tempZ.push_back(cb[0]->getZ());

298

299 for (std::vector<ibeo::ScanPoint>::iterator iter = (m_currentScan.getPointList().begin())+1 ;

iter != (m_currentScan.getPointList().end()) ; ++iter){

300 i f (((size_t)iter->getDeviceID()) == ((size_t)m_deviceIDs[indexOfID])){

301

302 cb.push_back(iter);

303 bool is0bigger1 = cb[0]->getZ() > cb[1]->getZ();

304 bool is1bigger2 = cb[1]->getZ() > cb[2]->getZ();

305 bool is0bigger2 = cb[0]->getZ() > cb[2]->getZ();

306

307 i f ((!is0bigger1 && is0bigger2) || (is0bigger1 && !is0bigger2)){

308 tempZ.push_back(cb[0]->getZ());

309 }

310 else i f ((!is1bigger2 && !is0bigger1) || (is1bigger2 && is0bigger1)){

311 tempZ.push_back(cb[1]->getZ());

312 }

313 else {

314 tempZ.push_back(cb[2]->getZ());

315 }

316 cb[0]->setCartesian(cb[0]->getX(),cb[0]->getY(), tempZ[0]);

317 }

318 }

319 }

320 }

321

322 }

323 }

324 }

143

C Preprocessing workers

C.2 Street surface marking detection

The street surface markings found on streets do reflect the light from the LRFs
very differently than the surrounding pavement and thus make easily identifiable
landmarks.

1 // EPWAnalyzeWorker.hpp
2 // created : 2011−01−26
3 // author : Jan Girlich
4

5 #ifndef EPWAnalyzeWorker_HPP

6 #define EPWAnalyzeWorker_HPP

7

8 // includes for class generation
9 #include "ibeobasic/ibeobasicdecl.hpp"

10 #include <IbeoAPI/Configurable.hpp>

11 #include "ibeograph/Preferences.hpp"

12

13 // includes for drains and sources
14 #include "ibeograph/drain/ScanDrain.hpp"

15 #include "ibeograph/source/ScanSource.hpp"

16

17 // includes for data types .
18 #include <IbeoAPI/Scan.hpp>

19 #include <IbeoAPI/Point3D.hpp>

20

21 // standard C++ includes
22 #include <vector>

23 #include <set>

24

25 class Scan;

26

27 #define EPWAnalyzeWorker_VERSION "1.0"

28

29 namespace ibeo {

30 namespace appbase {

31 namespace worker {

32

33 /**
34 * This worker calculates the f i r s t or second derivative between
35 * scanpoints and writes the result in the echo pulse width of the
36 * scanpoints .
37 *

38 * Output Data: Filtered Scan object
39 *

40 * Author(s) : Jan Girlich
41 */
42 class IBEOBASICDECL EPWAnalyzeWorker : public Configurable

43 , public ibeo::appbase::drain::ScanDrain

44 , public ibeo::appbase::source::ScanSource

45 {

46 public:
47 /**
48 * Constructor
49 */
50 EPWAnalyzeWorker(const ibeo::Preferences& preferences, const std::string& configBlockName);

51

52 /**
53 * destructor
54 */
55 virtual ~EPWAnalyzeWorker();

56

57 static const std::string& getDefaultTypeName() { return CONFIG_TYPE; }

144

C.2 Street surface marking detection

58

59 virtual void setScan(Scan& scan);

60

61 // member variables
62 private:
63 /** Name of the type of the configuration block for this f i l e . */
64 static const std::string CONFIG_TYPE;

65

66 Scan lowPassFilter(Scan scan);

67 f loat m_factor;

68 UINT8 m_differential;

69 };

70

71 } // worker
72 } // appbase
73 } // ibeo
74

75 #endif

1 // EPWAnalyzeWorker.cpp
2 // created : 2011−01−26
3 // author : Jan Girlich
4

5 #include "EPWAnalyzeWorker.hpp"

6 #include <IbeoAPI/Scan.hpp>

7 #include <IbeoAPI/Segment.hpp>

8

9 namespace ibeo{

10 namespace appbase{

11 namespace worker{

12

13 const std::string EPWAnalyzeWorker::CONFIG_TYPE = "EPWAnalyzeWorker";

14

15 EPWAnalyzeWorker::EPWAnalyzeWorker(const ibeo::Preferences& preferences, const std::string&

objectname)

16 : Configurable(getDefaultTypeName(), objectname)

17 {

18 define (new ParamFloat ("factor", m_factor, "Factor by which the EPW is multiplied", "10"));

19 define (new ParamUINT8 ("differential", m_differential, "differential ", "2"));

20 // Load values from the config f i l e , f i l l them into our
21 // parameters , and throw an exception i f something was invalid .
22 fillValuesValidateOrExcept(preferences.findByTypeAndName(getDefaultTypeName(), objectname));

23 }

24

25 EPWAnalyzeWorker::~EPWAnalyzeWorker()

26 {

27 }

28

29 bool spReflection (const ScanPoint& sp)

30 {

31 return (sp.getSubchannel() != 0);

32 }

33

34 bool notMatchDeviceID (const ScanPoint& sp, const int& spDevID)

35 {

36 return (sp.getDeviceID() != spDevID);

37 }

38

39 // Sort criterion . This method is passed to std : : sort () to sort scan
40 // points by descending cartesian Y−coordinate .
41 static bool isYCoordinate (const ScanPoint& P1, const ScanPoint& P2)

42 {

43 return (P1.getY() > P2.getY());

44 }

145

C Preprocessing workers

45

46 void EPWAnalyzeWorker::setScan(Scan& scan)

47 {

48 // Create a Scan object with al l meta data , but no ScanPoints
49 Scan limitedScans(scan);

50 limitedScans.resize(0);

51

52 // Remove al l Scanpoints which are not the f i r s t reflection
53 std::remove_copy_if(scan.begin(), scan.end(), std::back_inserter(limitedScans.getPointList()),

boost::bind(&spReflection, _1));

54

55 // collecting al l DeviceIDs
56 std::set<int> deviceIDs;

57 for (std::vector<ibeo::ScannerInfo>::iterator it = limitedScans.getScannerInfos().begin(); it !=

limitedScans.getScannerInfos().end(); ++it)

58 deviceIDs.insert(it->getDeviceID());

59

60 // Split up Scans by DeviceIDs
61 std::vector<Scan> allScans;

62 for (std::set<int>::iterator devIDit = deviceIDs.begin(); devIDit != deviceIDs.end(); ++devIDit)

63 {

64 Scan newDevice(scan);

65 newDevice.resize(0);

66 std::remove_copy_if(limitedScans.begin(), limitedScans.end(), std::back_inserter(newDevice.

getPointList()), boost::bind(¬MatchDeviceID, _1, *devIDit));

67

68 i f (newDevice.getNumPoints() < 3)

69 {

70 traceWarning("") << "Scan has less than three ScanPoints per Scanner and is dropped." << std::

endl;

71 }

72 else
73 {

74 // Sort new Scan object by cartesian Y−coordinate
75 std::sort(newDevice.getPointListBegin(), newDevice.getPointListEnd(), isYCoordinate);

76

77 allScans.push_back(newDevice);

78 }

79 }

80

81 // Get an iterator over al l Scans
82 Scan::iterator it;

83

84 // For every scanners Scan object go through al l ScanPoints and
85 // detect road surface markings
86 Scan outputScan(scan);

87 outputScan.resize(0);

88

89 i f (m_differential == (UINT8)2)

90 {

91 for (std::vector<Scan>::iterator scanIt = allScans.begin(); scanIt != allScans.end(); ++scanIt)

92 {

93 // Vector containing the recent ScanPoints EchoWidths
94 std::vector<float > recentSPs;

95

96 // in i t ia l i ze iterator over current Scan object to f i l l
97 it = (*scanIt).begin();

98

99 // Add three Scanpoints to the recentSPs−vector to prepare for the
100 // following loop
101 for (int i=0; i<3; ++i)

102 {

103 recentSPs.push_back((*it).getEchoWidth());

104 ++it;

105 }

146

C.2 Street surface marking detection

106

107 while(it != (*scanIt).end()) {

108

109 // Set the echoWidth to the magnified 2nd derivation
110 (it-3)->setEchoWidth(m_factor * fabs(fabs(recentSPs[0]-recentSPs[1]) - fabs(recentSPs[1] -

recentSPs[2])));

111

112 // iterate and move elements around in the recentSPs vector
113 ++it;

114 recentSPs.push_back((*it).getEchoWidth());

115 recentSPs.erase(recentSPs.begin());

116 }

117 // Delete the last three scanpoints in the result
118 (*scanIt).getPointList().erase((*scanIt).end()-3, (*scanIt).end());

119 outputScan.addScan(*scanIt);

120 }

121 }

122

123 i f (m_differential == (UINT8)1)

124 {

125 for (std::vector<Scan>::iterator scanIt = allScans.begin(); scanIt != allScans.end(); ++scanIt)

126 {

127 // Vector containing the recent ScanPoints EchoWidths
128 std::vector<float > recentSPs;

129

130 // in i t ia l i ze iterator over current Scan object to f i l l
131 it = (*scanIt).begin();

132

133 // Add three Scanpoints to the recentSPs−vector to prepare for the
134 // following loop
135 for (int i=0; i<2; ++i)

136 {

137 recentSPs.push_back((*it).getEchoWidth());

138 ++it;

139 }

140

141 while(it != (*scanIt).end())

142 {

143 // Set the echoWidth to the magnified 2nd derivation
144 (it-2)->setEchoWidth(m_factor * fabs(recentSPs[0]-recentSPs[1]));

145

146 // iterate and move elements around in the recentSPs vector
147 ++it;

148 recentSPs.push_back((*it).getEchoWidth());

149 recentSPs.erase(recentSPs.begin());

150 }

151 // Delete the last two scanpoints in the result
152 (*scanIt).getPointList().erase((*scanIt).end()-2, (*scanIt).end());

153 outputScan.addScan(*scanIt);

154 }

155 }

156 m_signalScan(outputScan);

157 }

158 }

159 }

160 }

147

C Preprocessing workers

C.3 Echo pulse width cutter

After calculating the echo pulse widths in the street surface marking detector worker
this worker removes the scanpoints below a configurable threshold.

1 // ScanEPWCutWorker.hpp
2 // created : 2011−01−26
3 // author : Jan Girlich
4

5 #ifndef ScanEPWCutWorker_HPP

6 #define ScanEPWCutWorker_HPP

7

8 // includes for class generation
9 #include "ibeobasic/ibeobasicdecl.hpp"

10 #include <IbeoAPI/Configurable.hpp>

11 #include "ibeograph/Preferences.hpp"

12

13 // includes for drains and sources
14 #include "ibeograph/drain/ScanDrain.hpp"

15 #include "ibeograph/source/ScanSource.hpp"

16

17 // includes for data types .
18 #include <IbeoAPI/Scan.hpp>

19

20 class Scan;

21

22 #define ScanEPWCutWorker_VERSION "1.0"

23

24 namespace ibeo {

25 namespace appbase {

26 namespace worker {

27

28 /**
29 * This worker removes any point from scans whose echo pulse width is
30 * not within a given span.
31 *

32 * Output Data: Filtered Scan object
33 *

34 * Author(s) : Jan Girlich
35 */
36 class IBEOBASICDECL ScanEPWCutWorker : public Configurable

37 , public ibeo::appbase::drain::ScanDrain

38 , public ibeo::appbase::source::ScanSource

39 {

40 public:
41 /**
42 * Constructor
43 */
44 ScanEPWCutWorker(const ibeo::Preferences& preferences, const std::string& configBlockName);

45

46 /**
47 * destructor
48 */
49 virtual ~ScanEPWCutWorker();

50

51 static const std::string& getDefaultTypeName() { return CONFIG_TYPE; }

52

53 virtual void setScan(Scan& scan);

54

55 // member variables
56 private:
57 /** Name of the type of the configuration block for this f i l e . */
58 static const std::string CONFIG_TYPE;

148

C.3 Echo pulse width cutter

59

60 f loat m_scanner1_min;

61 f loat m_scanner2_min;

62 f loat m_scanner3_min;

63 f loat m_scanner1_max;

64 f loat m_scanner2_max;

65 f loat m_scanner3_max;

66 };

67

68 } // worker
69 } // appbase
70 } // ibeo
71

72 #endif

1 // ScanEPWCutWorker.cpp
2 // created : 2011−01−26
3 // author : Jan Girlich
4

5 #include "ScanEPWCutWorker.hpp"

6

7 #include <IbeoAPI/Scan.hpp>

8

9 namespace ibeo{

10 namespace appbase{

11 namespace worker{

12

13 const std::string ScanEPWCutWorker::CONFIG_TYPE = "ScanEPWCutWorker";

14

15 ScanEPWCutWorker::ScanEPWCutWorker(const ibeo::Preferences& preferences, const std::string&

objectname)

16 : Configurable(getDefaultTypeName(), objectname)

17 {

18 define (new ParamLength ("Scanner1_min", m_scanner1_min, "Minimum EPW to keep", "0.0 m"));

19 define (new ParamLength ("Scanner2_min", m_scanner2_min, "Minimum EPW to keep", "0.0 m"));

20 define (new ParamLength ("Scanner3_min", m_scanner3_min, "Minimum EPW to keep", "0.0 m"));

21 define (new ParamLength ("Scanner1_max", m_scanner1_max, "Maximum EPW to keep", "1000000000.0 m"))

;

22 define (new ParamLength ("Scanner2_max", m_scanner2_max, "Maximum EPW to keep", "1000000000.0 m"))

;

23 define (new ParamLength ("Scanner3_max", m_scanner3_max, "Maximum EPW to keep", "1000000000.0 m"))

;

24

25 // Load values from the config f i l e , f i l l them into our
26 // parameters , and throw an exception i f something was invalid .
27 fillValuesValidateOrExcept(preferences.findByTypeAndName(getDefaultTypeName(), objectname));

28 }

29

30 ScanEPWCutWorker::~ScanEPWCutWorker()

31 {

32 }

33

34 bool spBetweenValues(const ScanPoint& sp, f loat s1min, f loat s1max, f loat s2min, f loat s2max, f loat
s3min, f loat s3max)

35 {

36 bool bad = true;
37

38 i f (((int)sp.getDeviceID() == 1) && (sp.getEchoWidth() > s1min) && (sp.getEchoWidth() < s1max))

39 bad = false;
40 i f (((int)sp.getDeviceID() == 2) && (sp.getEchoWidth() > s2min) && (sp.getEchoWidth() < s2max))

41 bad = false;
42 i f (((int)sp.getDeviceID() == 3) && (sp.getEchoWidth() > s3min) && (sp.getEchoWidth() < s3max))

43 bad = false;
44

149

C Preprocessing workers

45 return bad;

46 }

47

48 void ScanEPWCutWorker::setScan(Scan& scan)

49 {

50 Scan limitedScans(scan);

51

52 limitedScans.resize(0);

53

54 // add the points with EPW levels in the expected range
55 std::remove_copy_if(scan.begin(), scan.end(), std::back_inserter(limitedScans.getPointList()),

boost::bind(&spBetweenValues, _1, m_scanner1_min, m_scanner1_max, m_scanner2_min,

m_scanner2_max, m_scanner3_min, m_scanner3_max));

56

57 m_signalScan(limitedScans);

58 }

59

60 }

61 }

62 }

C.4 Coordinate conversion

Converting spheric to cartesian coordinates and vice versa.

1 // coordconversion .hpp
2 // Copyright (c) Ibeo Automobile Sensor GmbH, 2011
3 // created : 2011−02−24
4 // author : Jan Girlich
5

6 #ifndef IBEO_FASTSLAM_COORDCONVERSION_HPP

7 #define IBEO_FASTSLAM_COORDCONVERSION_HPP

8

9 #include <iostream>

10 #include <math.h>

11 #include <assert.h>

12

13 using namespace std;

14 namespace ibeo {

15 namespace appbase {

16 namespace worker {

17

18 struct sphere

19 {

20 f loat rho;

21 f loat theta;

22 f loat phi;

23 } ;

24

25 struct cart

26 {

27 f loat x;

28 f loat y;

29 f loat z;

30 } ;

31

32

33 /// This class converts 3D cartesian coordinats to spherical coordinates
34 /// and vice versa . For details see :
35 /// http://www.math.montana.edu/frankw/ccp/multiworld/multipleIVP/spherical/learn .htm

150

C.5 Slicing

36 class coordconversion

37 {

38 public:
39 coordconversion() {}

40

41 sphere cart2sphere(cart c)

42 {

43 sphere s;

44 i f ((c.x == 0) && (c.y == 0) && (c.z == 0))

45 {

46 s.rho = 0;

47 s.theta = 0;

48 }

49 else
50 {

51 s.rho = sqrt(c.x*c.x + c.y*c.y + c.z*c.z);

52 s.theta = acos(c.z / s.rho);

53 }

54

55 i f ((c.x == 0) && (c.y == 0))

56 {

57 i f (c.z >= 0)

58 s.phi = M_PI * 0.5;

59 else
60 s.phi = -M_PI * 0.5;

61 }

62 else
63 {

64 f loat S = sqrt(c.x*c.x + c.y*c.y);

65 i f (c.x >= 0)

66 s.phi = asin (c.y / S);

67 else
68 s.phi = M_PI - asin (c.y / S);

69 }

70 return s;

71 }

72

73 cart sphere2cart(sphere s)

74 {

75 cart c;

76 c.x = s.rho * sin(s.theta) * cos(s.phi) ;

77 c.y = s.rho * sin(s.theta) * sin(s.phi);

78 c.z = s.rho * cos(s.theta);

79 return c;

80 }

81

82 };

83

84

85 } // worker
86 } // appbase
87 } // ibeo
88

89 #endif // IBEOFASTSLAMCOORDCONVERSIONHPP

C.5 Slicing

The slice worker joins multiple scans into overlapping slices of configurable length.

1 // SliceWorker .hpp

151

C Preprocessing workers

2 // Copyright (c) Ibeo Automobile Sensor GmbH, 2008−2009
3 // created : 2009/02/26
4

5 #ifndef SliceWorker_HPP

6 #define SliceWorker_HPP

7

8 #include <IbeoAPI/Scan.hpp>

9 #include <IbeoAPI/MountingPosition.hpp>

10 #include <IbeoAPI/PositionWGS84.hpp>

11 #include <IbeoAPI/VehicleStateBasic.hpp>

12 #include <IbeoAPI/Point3D.hpp>

13

14 #include <IbeoAPI/Configurable.hpp>

15

16 #include "ibeobasic/ibeobasicdecl.hpp"

17

18 #include "ibeograph/drain/PositionWGS84Drain.hpp"

19 #include "ibeograph/drain/VehicleStateDrain.hpp"

20 #include "ibeograph/drain/ScanDrain.hpp"

21 #include "ibeograph/source/PositionWGS84Source.hpp"

22 #include "ibeograph/source/VehicleStateSource.hpp"

23 #include "ibeograph/source/ScanSource.hpp"

24

25 #include "ibeograph/Preferences.hpp"

26

27 #include <iostream>

28 #include <fstream>

29 #include <string>

30 #include <boost/circular_buffer.hpp>

31

32

33 using namespace std;

34 namespace ibeo {

35 namespace appbase {

36 namespace worker {

37

38 /**
39 * \brief This worker combines Scans
40 */
41 class IBEOBASICDECL SliceWorker : public Configurable,

42 public ibeo::appbase::drain::PositionWGS84Drain,

43 public ibeo::appbase::drain::VehicleStateDrain,

44 public ibeo::appbase::drain::ScanDrain,

45 public ibeo::appbase::source::PositionWGS84Source,

46 public ibeo::appbase::source::VehicleStateSource,

47 public ibeo::appbase::source::ScanSource

48 {

49 public:
50 /// constructor (loads the mounting position out of the configuration f i l e)
51 SliceWorker(const ibeo::Preferences& preferences, const std::string& objectname = "");

52

53 ~SliceWorker(){};

54

55 static const char* getDefaultTypeName() { return "SliceWorker"; }

56

57 virtual void setScan(Scan &scan);

58

59 /*
60 * set the f i r s t position of f i l e i f necessary
61 * set the relative position to the f i r s t position of the current scan
62 */
63 virtual void setPositionWGS84 (const PositionWGS84 &posWGS84);

64

65 /*
66 * set the f i r s t position of f i l e i f necessary

152

C.5 Slicing

67 * set the relative position to the f i r s t position of the current scan
68 */
69 virtual void setVehicleState (const VehicleStateBasic &vehicleStateBasic);

70

71 private:
72 void transformToMountingPosition(Scan &scan, MountingPosition vehicleMountingPosition);

73 MountingPosition getRelativeMountingPositionVS(VehicleStateBasic currentVehicleState,

VehicleStateBasic originVehicleState);

74 MountingPosition getRelativeMountingPositionWGS(PositionWGS84 currentWGS84, PositionWGS84

originWGS84);

75 /// Device ID of scanner whose mounting position should be changed
76 INT16 m_deviceID;

77

78 enum m_processingState {noPosition, newSlice, fillingSlice, finishedSlice} m_processingState;

79

80 Scan m_scan;

81 Scan m_scanSlice;

82 PositionWGS84 m_currentWGS84;

83 PositionWGS84 m_originWGS84;

84

85 VehicleStateBasic m_currentVehicleState;

86 VehicleStateBasic m_originVehicleState;

87

88 INT8 m_numOfScansInSlice;

89 INT8 m_numOfScansInScan;

90 INT8 m_numOfScansOverlap;

91 bool m_groundLabeled;

92 boost::circular_buffer<Scan> m_overlapScan;

93 boost::circular_buffer<PositionWGS84> m_overlapWGS;

94 boost::circular_buffer<VehicleStateBasic> m_overlapVS;

95 };

96

97 } // worker
98 } // appbase
99 } // ibeo

100

101 #endif

1 #include "SliceWorker.hpp"

2

3 #include <IbeoAPI/ParamTime.hpp>

4 #include <IbeoAPI/ScannerInfo.hpp>

5 #include <vector>

6 #include <IbeoAPI/StringToolbox.hpp>

7 #include "fastslam/coordconversion.hpp"

8

9 using namespace std;

10

11 namespace ibeo{

12 namespace appbase{

13 namespace worker{

14

15 SliceWorker::SliceWorker(const ibeo::Preferences &preferences, const std::string& objectname)

16 : Configurable(getDefaultTypeName(), objectname)

17 , m_deviceID(-1)

18 {

19 define (new ParamINT8 ("numberOfScansInSlice", m_numOfScansInSlice, "Number of Scans >0 merged to

one new Scan object. Do not put more than (ScanPointLimit/Scan) ScanPoints into one Scan

object.","20"));

20 define (new ParamINT8 ("numberOfScansOverlap", m_numOfScansOverlap, "Number of Scans for each

slice to overlap with the previous one.","5"));

21 define (new ParamINT16 ("DeviceID", m_deviceID, "DeviceID to be used for localisation. Default:

127 (VehicleState)","127"));

153

C Preprocessing workers

22 define (new ParamBool ("GroundLabeled", m_groundLabeled, "Set to true if the scans are

preprocessed for ground detection","false"));

23

24 fillValuesOrException (preferences.getConfigValues (getDefaultTypeName(), objectname));

25

26 m_processingState = noPosition;

27 m_overlapScan = boost::circular_buffer<Scan>(m_numOfScansOverlap);

28 m_overlapWGS = boost::circular_buffer<PositionWGS84>(m_numOfScansOverlap);

29 m_overlapVS = boost::circular_buffer<VehicleStateBasic>(m_numOfScansOverlap);

30 // Load values from the config f i l e , f i l l them into our
31 // parameters , and throw an exception i f something was invalid .
32 fillValuesValidateOrExcept(preferences.findByTypeAndName(getDefaultTypeName(), objectname));

33 }

34

35 void SliceWorker::setScan(Scan &scan)

36 {

37 traceDebug("") << "Processing state: " << m_processingState << endl;

38

39 i f (m_processingState == noPosition)

40 {

41 traceWarning("") << "No VehicleState or PositionWGS84 Information. Nothing to be done." << endl;

42 } else {

43 m_scan = scan;

44 m_overlapScan.push_back(scan);

45 i f (m_deviceID == 127)

46 {

47 m_overlapVS.push_back(m_currentVehicleState);

48 }

49 i f(m_deviceID == 30 || m_deviceID == 31 || m_deviceID == 0 || m_deviceID == 41 || m_deviceID ==

42 || m_deviceID == 43 || m_deviceID == 44 || m_deviceID == 45)

50 {

51 m_overlapWGS.push_back(m_currentWGS84);

52 }

53

54 // new mountingposition set to vehicleposition relative to the startposition of each f i l e
55 MountingPosition vehicleMountingPosition;

56

57 i f(m_deviceID == 127)

58 {

59 vehicleMountingPosition = getRelativeMountingPositionVS(m_currentVehicleState,

m_originVehicleState);

60 }

61 else
62 {

63 i f(m_deviceID == 30 || m_deviceID == 31 || m_deviceID == 0 || m_deviceID == 41 || m_deviceID

== 42 || m_deviceID == 43 || m_deviceID == 44 || m_deviceID == 45)

64 {

65 vehicleMountingPosition = getRelativeMountingPositionWGS(m_currentWGS84, m_originWGS84);

66 }

67 else
68 {

69 traceError("") << "DeviceID " << m_deviceID << " not specified" << endl;

70 }

71 }

72

73 transformToMountingPosition(m_scan, vehicleMountingPosition);

74

75 // put m numOfScansInSlice scans in one f i l e
76 i f (m_processingState == newSlice)

77 {

78 m_processingState = fillingSlice;

79 m_numOfScansInScan = m_overlapScan.size()+1;

80 i f (m_overlapScan.size() > 0)

81 {

82 ScanPoint pt = ScanPoint();

154

C.5 Slicing

83 m_scanSlice = m_scan;

84 m_scanSlice.resize(0, pt);

85

86 for (size_t i=0 ; i<m_overlapScan.size(); ++i)

87 {

88 assert(m_overlapScan.size() > i);

89 Scan scan = m_overlapScan[i];

90 i f(m_deviceID == 127)

91 {

92 i f (i == 0) m_originVehicleState = m_overlapVS[0];

93 assert(m_overlapVS.size() > i);

94 vehicleMountingPosition = getRelativeMountingPositionVS(m_overlapVS[i],

m_originVehicleState);

95 }

96 else
97 {

98 i f(m_deviceID == 30 || m_deviceID == 31 || m_deviceID == 0 || m_deviceID == 41 ||

m_deviceID == 42 || m_deviceID == 43 || m_deviceID == 44 || m_deviceID == 45)

99 {

100 assert(m_overlapWGS.size() > i);

101 vehicleMountingPosition = getRelativeMountingPositionWGS(m_overlapWGS[i],

m_originWGS84);

102 }

103 else
104 {

105 traceError("") << "DeviceID " << m_deviceID << " not specified" << endl;

106 }

107 }

108

109 transformToMountingPosition(scan, vehicleMountingPosition);

110 scan.setVehicleCoordinates(true);
111 m_scanSlice.setVehicleCoordinates(true);
112 m_scanSlice.addScan(scan);

113 }

114 }

115 else
116 {

117 m_scanSlice = m_scan;

118 }

119 }

120 else
121 {

122 i f (m_numOfScansInScan < m_numOfScansInSlice)

123 {

124 m_scan.setVehicleCoordinates(true);
125 m_scanSlice.setVehicleCoordinates(true);
126 m_scanSlice.addScan(m_scan);

127 m_numOfScansInScan++;

128 }

129 else
130 {

131 m_scan.setVehicleCoordinates(true);
132 m_scanSlice.setVehicleCoordinates(true);
133 m_scanSlice.addScan(m_scan);

134 m_processingState = finishedSlice;

135 traceDebug("") << "Finished slice" << endl;

136 }

137 }

138 }

139 }

140

141 MountingPosition SliceWorker::getRelativeMountingPositionVS(VehicleStateBasic currentVehicleState,

VehicleStateBasic originVehicleState)

142 {

143 coordconversion converter;

155

C Preprocessing workers

144

145 cart c;

146 c.x = currentVehicleState.getX()-originVehicleState.getX();

147 c.y = currentVehicleState.getY()-originVehicleState.getY();

148 c.z = 0;

149

150 sphere s = converter.cart2sphere(c);

151

152 s.phi = s.phi - originVehicleState.getCourseAngle();

153

154 c = converter.sphere2cart(s);

155

156 MountingPosition vehicleMountingPosition;

157 vehicleMountingPosition = MountingPosition(

158 currentVehicleState.getCourseAngle()-originVehicleState.getCourseAngle(),

159 0.0f,

160 0.0f,

161 c.x,

162 c.y,

163 0.0f);

164 return vehicleMountingPosition;

165 }

166

167 MountingPosition SliceWorker::getRelativeMountingPositionWGS(PositionWGS84 currentWGS84,

PositionWGS84 originWGS84)

168 {

169 Point3D currentRelWGS84;

170 MountingPosition vehicleMountingPosition;

171

172 currentRelWGS84 = currentWGS84.getCartesianRelPos(originWGS84);

173 currentRelWGS84.rotateAroundZ(-originWGS84.getYawAngleInRad()-ibeo::PI_double/2);

174 currentRelWGS84.rotateAroundY(-originWGS84.getPitchAngleInRad());

175 currentRelWGS84.rotateAroundX(-originWGS84.getRollAngleInRad());

176 vehicleMountingPosition = MountingPosition(currentWGS84.getYawAngleInRad()-originWGS84.

getYawAngleInRad(),currentWGS84.getPitchAngleInRad()-originWGS84.getPitchAngleInRad(),

currentWGS84.getRollAngleInRad()-originWGS84.getRollAngleInRad(),currentRelWGS84.getX(),

currentRelWGS84.getY(),currentRelWGS84.getZ());

177

178 return vehicleMountingPosition;

179 }

180

181 void SliceWorker::transformToMountingPosition(Scan &scan, MountingPosition vehicleMountingPosition)

182 {

183 traceDebug("") << "transforming mountingPosition!" << endl;

184 scan.setVehicleCoordinates(false);
185 for (vector<ScannerInfo>::iterator iter = scan.getScannerInfos().begin() ; iter != scan.

getScannerInfos().end() ; ++iter)

186 {

187 iter->setMountingPosition(vehicleMountingPosition);

188 }

189 scan.transformToVehicleCoordinatesUnsorted();

190 }

191

192 /*
193 * set the f i r s t position of f i l e i f necessary
194 * set the relativ position to the f i r s t position of the current scan
195 * only used i f deviceID == 127 (VehicleState)
196 */
197 void SliceWorker::setVehicleState (const VehicleStateBasic &vehicleStateBasic)

198 {

199 i f (m_deviceID == 127)

200 {

201 i f (m_processingState == noPosition)

202 {

203 m_processingState = newSlice;

156

C.5 Slicing

204 m_originVehicleState = vehicleStateBasic;

205 }

206

207 i f (m_processingState == finishedSlice)

208 {

209 // signal position before scan so you know where to place the scan
210 m_signalVehicleState(m_originVehicleState);

211

212 i f (m_groundLabeled)

213 m_scanSlice.setGroundLabeled(true);
214 else
215 m_scanSlice.setGroundLabeled(false);
216

217 m_scanSlice.setVehicleCoordinates(true);
218 m_signalScan(m_scanSlice);

219 m_originVehicleState = vehicleStateBasic;

220 m_processingState = newSlice;

221 }

222 m_currentVehicleState = vehicleStateBasic;

223 }

224 }

225

226 void SliceWorker::setPositionWGS84 (const PositionWGS84 &WGS84Basic)

227 {

228 i f ((int)WGS84Basic.getDeviceID() == m_deviceID)

229 {

230 m_currentWGS84 = WGS84Basic;

231 i f (m_processingState == noPosition)

232 {

233 m_processingState = newSlice;

234 m_originWGS84 = WGS84Basic;

235 }

236 i f (m_processingState == finishedSlice)

237 {

238 // signal position before scan so you know where to place the scan
239 m_signalPositionWGS84(m_originWGS84);

240

241 i f (m_groundLabeled)

242 m_scanSlice.setGroundLabeled(true);
243 else
244 m_scanSlice.setGroundLabeled(false);
245

246 m_scanSlice.setVehicleCoordinates(true);
247 m_signalScan(m_scanSlice);

248 m_originWGS84 = WGS84Basic;

249 m_processingState = newSlice;

250 }

251 }

252 else
253 {

254 traceDebug("") << "DeviceID: " << (int)WGS84Basic.getDeviceID() << endl;

255 }

256 }

257

258

259 } // namespace ibeo
260 } // namespace appbase
261 } // namespace worker

157

FastSLAM

D
The FastSLAM worker is the most complex and largest one. Some of its functionality
is outsourced to keep a better overview and make the code better maintainable.

D.1 SLAMWorker

Within this file the main processing for FastSLAM is done.

1 // SLAMWorker.hpp
2 // created : 2011−02−11
3 // author : Jan Gries
4

5 #ifndef SLAMWorker_HPP

6 #define SLAMWorker_HPP

7

8 #include <IbeoAPI/Scan.hpp>

9 #include <IbeoAPI/MountingPosition.hpp>

10 #include <IbeoAPI/PositionWGS84.hpp>

11 #include <IbeoAPI/VehicleStateBasic.hpp>

12 #include <IbeoAPI/Point3D.hpp>

13 #include <IbeoAPI/Position3D.hpp>

14 #include <list>

15

16 #include <IbeoAPI/Configurable.hpp>

17

18 #include "ibeobasic/ibeobasicdecl.hpp"

19

20 #include "ibeograph/drain/PositionWGS84Drain.hpp"

21 #include "ibeograph/drain/ScanDrain.hpp"

22 #include "ibeograph/drain/VehicleStateDrain.hpp"

23 #include "ibeograph/source/PositionWGS84Source.hpp"

24 #include "ibeograph/source/ScanSource.hpp"

25 #include "ibeograph/source/VehicleStateSource.hpp"

26

27 #include <boost/numeric/ublas/matrix.hpp>

28

29 #include "ibeobasic/worker/fastslam/Particle.hpp"

30 #include "ibeobasic/worker/fastslam/Landmark.hpp"

31 #include "ibeobasic/worker/fastslam/Likelihoodtable.hpp"

32

33 #include "ibeograph/Preferences.hpp"

34

35 #include <vector>

36 #include <cmath>

37 #include <iostream>

38 #include <fstream>

39 #include <string>

159

D FastSLAM

40

41 using namespace std;

42 namespace ibeo {

43 namespace appbase {

44 namespace worker {

45

46 /**
47 * \brief This worker tries to improve the trajectory using the Scandata. No online Algorithm!
48 *

49 * Potential Limitations : One Scan must have an overlap with its successor
50 *

51 * Input Data Assumptions: Scan must be in vehicle coordinate system.
52 *

53 * Output Data: new VehicleState messages and the Scan belonging to
54 *

55 * Author(s) : Jan Gries
56 */
57

58 typedef boost::numeric::ublas::matrix<float > Matrix;

59 typedef vector<Particle> ParticleCollection;

60

61 class IBEOBASICDECL SLAMWorker : public Configurable,

62 public ibeo::appbase::drain::PositionWGS84Drain,

63 public ibeo::appbase::drain::VehicleStateDrain,

64 public ibeo::appbase::drain::ScanDrain,

65 public ibeo::appbase::source::PositionWGS84Source,

66 public ibeo::appbase::source::VehicleStateSource,

67 public ibeo::appbase::source::ScanSource

68 {

69 public:
70 /**
71 * constructor
72 */
73 SLAMWorker(const ibeo::Preferences& preferences, const std::string& objectname = "");

74

75 /**
76 * destructor
77 */
78 ~SLAMWorker(){};

79

80 static const char* getDefaultTypeName() { return "SLAMWorker"; }

81

82 virtual void setScan(Scan &scan);

83 virtual void setPositionWGS84 (const PositionWGS84 &posWGS84);

84 virtual void setVehicleState (const VehicleStateBasic &vehicleState);

85

86 private:
87

88 void setScanPointsToMap ();

89 void startSlam (Scan scan);

90 void eliminateBadParticle ();

91 f loat findLimitForElimination ();

92 void eliminateParticlesWithEvaluationUnder(f loat limit);

93 bool isRatingLessThanLimit(const Particle &particle, f loat limit);

94 void updateParticleLandmarks();

95 void resamplingParticle();

96 void normRatings();

97 f loat trustInPosRelToGps(f loat distance);

98

99 double uniformRand(double min, double max);

100 Scan scanToMountingPosition(Scan scan, Position3D position);

101 void writeMapToFile (string string, Particle particle, int outputnumber);

102 void writeBestMapToFile (string string, Particle particle, int outputnumber);

103 void writeLandmarksToFile (string string, Particle particle);

104 void writeInputScansToFile (string string, Particle particle);

160

D.1 SLAMWorker

105

106 UINT8 m_deviceID;

107 UINT16 m_maxNumOfParticles;

108 size_t m_FileOutputNum;

109 size_t m_numHits;

110

111 PositionWGS84 m_originWGS84;

112 VehicleStateBasic m_originVehicleState;

113

114 Position3D m_oldPosition;

115 Position3DCollection m_odometryTrajectory;

116

117 f loat m_threshold;

118

119 f loat m_alphaYaw1;

120 f loat m_alphaPitch1;

121 f loat m_alphaTrans;

122 f loat m_alphaYaw2;

123 f loat m_alphaPitch2;

124 f loat m_alphaRoll;

125 f loat m_fYaw1;

126 f loat m_fYaw2;

127

128 UINT8 m_outputFreq;

129

130 list<Scan> m_scanList;

131 list<Scan> m_fullScansList;

132 ParticleCollection m_particles;

133 ParticleCollection m_particlesInWork;

134

135 PositionWGS84 m_startingPointWGS84;

136 VehicleStateBasic m_startingPointVehicleState;

137

138 enum ProcessingStateOdometry {noOdometry, waitForNewOdometry, gotOdometry};

139 enum ProcessingStateScan {noScan, waitForNewScan, gotScan};

140 ProcessingStateOdometry m_processingStateOdometry;

141 ProcessingStateScan m_processingStateScan;

142 };

143

144 } // worker
145 } // appbase
146 } // ibeo
147

148 #endif

1 // SLAMWorker.cpp
2 // created : 2011−02−11
3 // author : Jan Gries
4

5 #include "SLAMWorker.hpp"

6

7 #include <IbeoAPI/ParamTime.hpp>

8 #include <IbeoAPI/ScannerInfo.hpp>

9 #include <vector>

10 #include <IbeoAPI/StringToolbox.hpp>

11

12 #include <fstream>

13 #include <sstream>

14 #include <ostream>

15

16 using namespace std;

17

18 namespace ibeo{

19 namespace appbase{

161

D FastSLAM

20 namespace worker{

21

22 SLAMWorker::SLAMWorker(const ibeo::Preferences &preferences, const std::string& objectname)

23 : Configurable(getDefaultTypeName(), objectname)

24 {

25 define (new ParamUINT16 ("maxNumOfParticles", m_maxNumOfParticles, "maximum number of particles

that are calculated per position", "100"));

26 define (new ParamUINT8 ("DeviceID", m_deviceID, "DeviceID of INS to be used for localisation", "30

"));

27 define (new ParamFloat ("Threshold", m_threshold, "Likelihood value under which an observation is

considered a new landmark", "0.1"));

28 define (new ParamUINT8 ("OutputFrequency", m_outputFreq, "Every X scans output files are generated

, X is the frequency", "20"));

29

30 // Parameters to calculate the particle cloud
31

32 define (new ParamFloat ("AlphaYaw1", m_alphaYaw1, "alpha for yaw angle distribution of the

transformation vector", "0.01"));

33 define (new ParamFloat ("AlphaPitch1", m_alphaPitch1, "alpha for pitch angle distribution of the

transformation vector", "0.01"));

34 define (new ParamFloat ("AlphaTrans", m_alphaTrans, "alpha for distribution of the transformation

vector length ", "0.01"));

35 define (new ParamFloat ("AlphaYaw2", m_alphaYaw2, "alpha for yaw distribution after

transformation", "0.01"));

36 define (new ParamFloat ("AlphaPitch2", m_alphaPitch2, "alpha for pitch distribution after

transformation", "0.01"));

37 define (new ParamFloat ("AlphaRoll", m_alphaRoll, "alpha for roll distribution after

transformation", "0.01"));

38 define (new ParamFloat ("FYaw1", m_fYaw1, "static yaw error rate", "0.01"));

39 define (new ParamFloat ("FYaw2", m_fYaw2, "static yaw error rate", "0.01"));

40

41

42 fillValuesOrException (preferences.getConfigValues (getDefaultTypeName(), objectname));

43

44 // Load values from the config f i l e , f i l l them into our
45 // parameters , and throw an exception i f something was invalid .
46 fillValuesValidateOrExcept(preferences.findByTypeAndName(getDefaultTypeName(), objectname));

47 m_processingStateOdometry = noOdometry;

48

49 m_FileOutputNum = 0;

50 m_numHits = 0;

51 }

52

53 bool compareParticleRating(const Particle& i, const Particle& j)

54 {

55 // ’>’ i s descending order
56 return i.getRating() > j.getRating();

57 }

58

59 void SLAMWorker::setScan(Scan &scan)

60 {

61 traceDebug("") << "Scan received" << endl;

62

63 // put the unprocessed scans in m fullScansList . Only needed for . off
64 // export later on.
65 i f (scan.isGroundLabeled())

66 m_scanList.push_back(scan);

67 else
68 m_fullScansList.push_back(scan);

69

70 m_processingStateScan = gotScan;

71 i f (m_processingStateOdometry == gotOdometry)

72 {

73 startSlam(scan);

74 }

162

D.1 SLAMWorker

75 }

76

77 void SLAMWorker::setPositionWGS84 (const PositionWGS84 &WGS84Basic)

78 {

79 traceDebug("") << "WGS84-ID: " << (int)WGS84Basic.getDeviceID() << " received" << endl;

80 i f ((int)WGS84Basic.getDeviceID() == m_deviceID)

81 {

82 // but for initalization there is no update
83 i f(m_processingStateOdometry == noOdometry)

84 {

85 // save position as coordinate origin
86 m_originWGS84 = WGS84Basic;

87

88 Position3D newPosition = Position3D(

89 WGS84Basic.getYawAngleInRad(),

90 WGS84Basic.getPitchAngleInRad(),

91 WGS84Basic.getRollAngleInRad(),

92 WGS84Basic.getCartesianRelPos(m_originWGS84));

93

94 m_odometryTrajectory.push_back(newPosition);

95 m_processingStateOdometry = gotOdometry;

96 Particle tempParticle = Particle(newPosition);

97 tempParticle.setRating(1.0);

98 tempParticle.setNormRating(1.0);

99 for (size_t i=0; i<m_maxNumOfParticles; ++i)

100 {

101 m_particles.push_back(tempParticle);

102 }

103 return;
104 }

105 m_processingStateOdometry = gotOdometry;

106

107 // calculate the current position relative from the f i r s t
108 // WGS84Basic
109 traceDebug("") << "performing relPos transform on (" << WGS84Basic.getYawAngleInRad() << "," <<

WGS84Basic.getPitchAngleInRad() << "," << m_originWGS84.toString() << "," << WGS84Basic.

getCartesianRelPos(m_originWGS84) << endl;

110 Position3D newPosition = Position3D(

111 WGS84Basic.getYawAngleInRad(),

112 WGS84Basic.getPitchAngleInRad(),

113 WGS84Basic.getRollAngleInRad(),

114 WGS84Basic.getCartesianRelPos(m_originWGS84));

115 // save the current position
116 m_odometryTrajectory.push_back(newPosition);

117 }

118 }

119

120 void SLAMWorker::setVehicleState (const VehicleStateBasic &vehicleState)

121 {

122 traceDebug("") << "VehicleState received" << endl;

123 // but for initalization there is no update
124 i f(m_processingStateOdometry == noOdometry)

125 {

126 // save position as coordinate origin
127 m_originVehicleState = vehicleState;

128

129 Position3D newPosition = Position3D(

130 vehicleState.getCourseAngle()+ibeo::PI/2,

131 0,

132 0,

133 m_originVehicleState.getX()-vehicleState.getX(),

134 m_originVehicleState.getY()-vehicleState.getY(),

135 0);

136

137 m_odometryTrajectory.push_back(newPosition);

163

D FastSLAM

138 m_processingStateOdometry = gotOdometry;

139 Particle tempParticle = Particle(newPosition);

140 tempParticle.setRating(1.0);

141 tempParticle.setNormRating(1.0);

142 for (size_t i=0; i<m_maxNumOfParticles; ++i)

143 {

144 m_particles.push_back(tempParticle);

145 }

146 return;
147 }

148 m_processingStateOdometry = gotOdometry;

149

150 // calculate the current position relative to the f i r s t
151 // vehicleState
152 traceDebug("") << "performing relPos transform on (" << vehicleState.getCourseAngle() << "," <<

m_originVehicleState.toString() << "," << vehicleState.getX()-m_originVehicleState.getX()

<< vehicleState.getY()-m_originVehicleState.getY() << endl;

153 Position3D newPosition = Position3D(

154 vehicleState.getCourseAngle()+ibeo::PI/2,

155 0,

156 0,

157 m_originVehicleState.getX()-vehicleState.getX(),

158 m_originVehicleState.getY()-vehicleState.getY(),

159 0);

160

161 // save the current position
162 m_odometryTrajectory.push_back(newPosition);

163 }

164

165 void SLAMWorker::startSlam (Scan scan)

166 {

167 // measurement noise for the LRF: 2 cm max statist ical error (1 sigma)
168 // +/− 4 cm max systematic error . Since we have multiple LRF
169 // probably scanning the same landmarks the systematic error might add up.
170 Matrix measurementNoise = IdentityMatrix(3,3) * 0.1;

171

172 // calculate likelihoods for a l l landmark−observation associations
173 for (ParticleCollection::iterator iterParticle = m_particles.begin(); iterParticle != m_particles

.end(); ++iterParticle)

174 {

175 ExtendedKalmanFilter ekf = ExtendedKalmanFilter();

176

177 Matrix jacobian = Matrix(3,3);

178 Matrix innovationCovariance = Matrix(3,3);

179 ZCollection z_t;

180

181 Scan scanRelativeToParticle = scanToMountingPosition(scan, iterParticle->getlastOdometryUpdate()

);

182 for (Scan::iterator iterScan = scanRelativeToParticle.begin(); iterScan !=

scanRelativeToParticle.end(); ++iterScan)

183 {

184 z_t.push_back(iterScan->getPoint3D());

185 }

186

187 Position3DCollection::reverse_iterator rit = m_odometryTrajectory.rbegin();

188 assert (m_odometryTrajectory.size() > 0);

189 Position3D one = *rit;

190 Position3D two;

191 i f (m_odometryTrajectory.size() < 2)

192 {

193 two = *rit;

194 }

195 else
196 {

197 ++rit;

164

D.1 SLAMWorker

198 two = *rit;

199 }

200 iterParticle->calculateNewPose(

201 two,

202 one,

203 m_alphaYaw1,

204 m_alphaPitch1,

205 m_alphaTrans,

206 m_alphaYaw2,

207 m_alphaPitch2,

208 m_alphaRoll,

209 m_fYaw1,

210 m_fYaw2);

211

212 // Create Likelihood table
213 Likelihoodtable likelihoods(iterParticle->getlastOdometryUpdate(), iterParticle->

getSecondlastOdometryUpdate(), IdentityMatrix(3,3)/10);

214

215 vector<Landmark> landmarks = iterParticle->getMap(iterParticle->getlastOdometryUpdate());

216

217 likelihoods.initLandmarks(landmarks);

218 likelihoods.initObservations(z_t);

219

220 traceDebug("") << "After adding Observations: " << z_t.size() << endl;

221

222 likelihoods.calculateLikelihoods();

223 likelihoods.findBestGlobalAssociations();

224 likelihoods.findBestAssociations();

225

226 // calculate importance weight average
227 f loat importanceWeight = 0.0;

228 int importanceCounter = 1;

229

230 // Loop through al l observations
231 for (ZCollection::iterator iterZ = z_t.begin(); iterZ != z_t.end(); ++iterZ)

232 {

233 f loat maxLikelihood = likelihoods.getMaxLikelihoodForObservation(*iterZ);

234

235 assert(maxLikelihood == maxLikelihood);

236

237 importanceWeight += maxLikelihood;

238 ++importanceCounter;

239

240 // i f the features best likelihood is less than a fixed
241 // threshold , the feature is considered a new landmark
242 i f (maxLikelihood < m_threshold)

243 {

244 // observation iterZ is a new landmark
245 Landmark newLandmark;

246

247 // in i t ia l i ze mean (Probabilistic Robotics , 2nd Edition ,
248 // p. 461, l . 17)
249 newLandmark.mean = *iterZ;

250

251 // calculate new jacobian (Probabilistic Robotics , 2nd
252 // Edition , p. 461, l . 18)
253 Matrix invJacobian = IdentityMatrix(3,3);

254 i f (! InvertMatrix(ekf.landmarkJacobian(iterParticle->getlastOdometryUpdate(), newLandmark.

mean), invJacobian))

255 {

256 traceError("") << "Inversion of Matrix failed. Identity Matrix returned.\n";

257 }

258

259 // in i t ia l i ze covariance (Probabilistic Robotics , 2nd
260 // Edition , p. 461, l . 18)

165

D FastSLAM

261 Matrix invJaMeasure = prod(trans(invJacobian), measurementNoise);

262 newLandmark.covariance = prod(invJaMeasure, invJacobian);

263 for (size_t i=0; i<newLandmark.covariance.size1(); ++i)

264 for (size_t j=0; j<newLandmark.covariance.size2(); ++j)

265 i f (! (newLandmark.covariance(i,j) == newLandmark.covariance(i,j)))

266 {

267 traceError("") << "Covariance matrix has NaN values\n";

268 cout << "===new covariance: " << newLandmark.covariance << endl;

269 cout << "invJacobian: " << invJacobian << endl;

270 cout << "invJaMeasure: " << invJaMeasure << endl;

271 assert(false);
272 }

273

274 iterParticle->addLandmarkToMap(newLandmark);

275 }

276 // associate the current observation with the landmark with
277 // the highest likelihood
278 else
279 {

280 m_numHits++;

281 Landmark maxLM = likelihoods.getLandmarkWithMaxLikelihood(*iterZ);

282

283 Matrix associatedJacobian = ekf.landmarkJacobian(iterParticle->getlastOdometryUpdate(),

maxLM.mean);

284

285 Matrix associatedInnoCov = ekf.innovationCovariance(associatedJacobian, maxLM.covariance,

measurementNoise);

286

287 // update Kalman Gain (Probabilistic Robotics p. 461, l . 21)
288 Matrix associatedGain = ekf.ekfGain(associatedJacobian, maxLM.covariance, associatedInnoCov)

;

289

290 // update Kalman Mean (Probabilistic Robotics p. 461, l . 22)
291 maxLM.mean = ekf.ekfMean(maxLM.mean, associatedGain, *iterZ, maxLM.mean);

292

293 // update Kalman Covariance (Probabilistic Robotics
294 // p. 461, l . 23)
295 maxLM.covariance = ekf.ekfCovariance(associatedJacobian, maxLM.covariance, associatedGain,

measurementNoise);

296

297 iterParticle->updateLandmark(maxLM);

298 }

299 }

300

301 iterParticle->setRating(importanceWeight/importanceCounter);

302

303 // unobserved landmarks remain untouched
304 }

305

306 normRatings();

307

308 assert(m_particles.size() > 0);

309

310 for (ParticleCollection::iterator iterParticle = m_particles.begin(); iterParticle != m_particles

.end(); ++iterParticle)

311 {

312 // apply trust in position relative to GPS position
313 f loat distanceToGpsPos = iterParticle->getlastOdometryUpdate().getPoint().dist(

m_odometryTrajectory.back().getPoint());

314 iterParticle->setRating(iterParticle->getRating() * trustInPosRelToGps(distanceToGpsPos));

315 }

316

317 sort(m_particles.begin(), m_particles.end(), bind(&compareParticleRating, _1, _2));

318

319 Particle bestParticle = m_particles.front();

166

D.1 SLAMWorker

320 ParticleCollection::iterator bestParticleIt = m_particles.begin();

321

322 cout << "Best particles Importance Weight: " << bestParticle.getRating() << endl;

323

324 i f ((m_FileOutputNum % m_outputFreq) == 0)

325 {

326 writeMapToFile("output", bestParticle, m_FileOutputNum);

327 writeBestMapToFile("bestmap", bestParticle, m_FileOutputNum);

328 }

329 ++m_FileOutputNum;

330

331 resamplingParticle();

332

333 m_processingStateOdometry = waitForNewOdometry;

334 m_processingStateScan = waitForNewScan;

335

336 cout << "Number of adjusted Landmarks: " << m_numHits << endl;

337 }

338

339 void SLAMWorker::writeMapToFile (string string, Particle particle, int outputnum)

340 {

341 stringstream ss;

342 ss << string << setfill(’0’);

343 ss << setw(3) << outputnum << ".off";

344

345 ofstream out(ss.str().c_str());

346 unsigned int MAX_POINTS = 0;

347

348 for (list<Scan>::iterator iterScanList = m_scanList.begin(); iterScanList != m_scanList.end(); ++

iterScanList)

349 {

350 MAX_POINTS += iterScanList->getNumPoints();

351 }

352

353 MAX_POINTS *= m_maxNumOfParticles;

354

355 //create header
356 out << "OFF\n" << MAX_POINTS << " 0 0\n";

357

358 list<Scan>::iterator iterScanList = m_scanList.begin();

359

360 Position3DCollection odometryList = particle.getOdometryList();

361 Position3DCollection::iterator iterOdometry = odometryList.begin();

362

363 assert (m_scanList.size() == odometryList.size());

364 while (!(iterScanList == m_scanList.end() || iterOdometry == odometryList.end()))

365 {

366 Scan output = scanToMountingPosition(*iterScanList, *iterOdometry);

367 ++iterScanList;

368 ++iterOdometry;

369

370 for (Scan::iterator iterOutput = output.begin(); iterOutput != output.end(); ++iterOutput)

371 {

372 out << iterOutput->getX() << " " << iterOutput->getY() << " " << iterOutput->getZ() << " 1.0

0.0 0.0 1.0" << "\n";

373 }

374 }

375

376 int colorCounter = 0;

377 for (ParticleCollection::iterator iterParticle = m_particles.begin(); iterParticle != m_particles

.end(); ++iterParticle)

378 {

379 ++colorCounter;

380 list<Scan>::iterator iterScanList = m_scanList.begin();

381

167

D FastSLAM

382 Position3DCollection odometryList = iterParticle->getOdometryList();

383 Position3DCollection::iterator iterOdometry = odometryList.begin();

384

385 assert (m_scanList.size() == odometryList.size());

386 while (!(iterScanList == m_scanList.end() || iterOdometry == odometryList.end()))

387 {

388 Scan output = scanToMountingPosition(*iterScanList, *iterOdometry);

389 ++iterScanList;

390 ++iterOdometry;

391

392 for (Scan::iterator iterOutput = output.begin(); iterOutput != output.end(); ++iterOutput)

393 {

394 i f (iterParticle->getRating() != particle.getRating())

395 {

396 out << iterOutput->getX() << " " << iterOutput->getY() << " " << iterOutput->getZ() << "

0.0 " << (f loat)colorCounter/m_maxNumOfParticles << " " << 1 - (f loat)colorCounter/
m_maxNumOfParticles << " " << "1.0" << "\n";

397 }

398 }

399 }

400 }

401

402 out.close();

403 }

404

405 void SLAMWorker::writeBestMapToFile (string string, Particle particle, int outputnum)

406 {

407 stringstream ss;

408 ss << string << setfill(’0’);

409 ss << setw(3) << outputnum << ".off";

410

411 ofstream out(ss.str().c_str());

412 unsigned int MAX_POINTS = 0;

413

414 for (list<Scan>::iterator iterScanList = m_fullScansList.begin(); iterScanList != m_fullScansList.

end(); ++iterScanList)

415 {

416 MAX_POINTS += iterScanList->getNumPoints();

417 }

418

419 //create header
420 out << "OFF\n" << MAX_POINTS << " 0 0\n";

421

422 list<Scan>::iterator iterScanList = m_fullScansList.begin();

423

424 Position3DCollection odometryList = particle.getOdometryList();

425 Position3DCollection::iterator iterOdometry = odometryList.begin();

426

427 assert (m_scanList.size() == odometryList.size());

428 while (!(iterScanList == m_fullScansList.end() || iterOdometry == odometryList.end()))

429 {

430 Scan output = scanToMountingPosition(*iterScanList, *iterOdometry);

431 ++iterScanList;

432 ++iterOdometry;

433

434 for (Scan::iterator iterOutput = output.begin(); iterOutput != output.end(); ++iterOutput)

435 {

436 f loat echoWidth = iterOutput->getEchoWidth();

437 echoWidth *= 7;

438 i f (echoWidth > 1) echoWidth = 1;

439 out << iterOutput->getX() << " " << iterOutput->getY() << " " << iterOutput->getZ() << " " <<

echoWidth << " " << echoWidth << " " << echoWidth << " 1.0" << "\n";

440 }

441 }

442

168

D.1 SLAMWorker

443 out.close();

444 }

445

446 void SLAMWorker::resamplingParticle()

447 {

448 ParticleCollection newParticleCollection;

449 ParticleCollection::iterator iterParticle = m_particles.begin();

450 f loat sum = iterParticle->getNormRating();

451 f loat lookingValue = 0;

452

453 // cumulative distribution function
454 for (size_t i=0 ; i<m_maxNumOfParticles ; ++i)

455 {

456 lookingValue = ((uniformRand(0, 1) + i) / m_maxNumOfParticles);

457 assert (lookingValue <= 1);

458 while (lookingValue > sum)

459 {

460 ++iterParticle;

461 sum += iterParticle->getNormRating();

462 }

463 newParticleCollection.push_back(*iterParticle);

464 }

465

466 m_particles = newParticleCollection;

467

468 assert (sum <= 1.1);

469 }

470

471 Scan SLAMWorker::scanToMountingPosition(Scan scan, Position3D position)

472 {

473 assert (scan.isVehicleCoordinates());

474

475 scan.setVehicleCoordinates(false);
476

477 // adjust INS yaw angle to AppBase yaw angle
478 position.setYawAngle(position.getYawAngle()+ibeo::PI_double/2);

479

480 MountingPosition mountingPos(position);

481

482 for (vector<ScannerInfo>::iterator iter = scan.getScannerInfos().begin() ; iter != scan.

getScannerInfos().end() ; ++iter)

483 {

484 iter->setMountingPosition(mountingPos);

485 }

486

487 bool worked = scan.transformToVehicleCoordinatesUnsorted();

488 i f (!worked) traceWarning("") << "Scan::transformToVehicleCoordinatesUnsorted() returned false" <<

std::endl;

489 return scan;

490 }

491

492 void SLAMWorker::normRatings()

493 {

494 double sum = 0.0;

495 for (ParticleCollection::iterator iter = m_particles.begin(); iter != m_particles.end(); ++iter)

496 {

497 sum += iter->getRating();

498 }

499 i f (sum > 0)

500 {

501 for (ParticleCollection::iterator iter = m_particles.begin(); iter != m_particles.end(); ++iter)

502 {

503 iter->setNormRating(iter->getRating()/sum);

504 }

505 }

169

D FastSLAM

506 else
507 {

508 for (ParticleCollection::iterator iter = m_particles.begin(); iter != m_particles.end(); ++iter)

509 {

510 iter->setNormRating(1.0/m_particles.size());

511 }

512 }

513 }

514

515 double SLAMWorker::uniformRand(double min, double max)

516 {

517 boost::mt19937 generator;

518 boost::uniform_real<double> uni_dist(min, max);

519 boost::variate_generator<boost::mt19937&, boost::uniform_real<double> > getSample(generator,

uni_dist);

520 return getSample();

521 }

522

523 f loat SLAMWorker::trustInPosRelToGps(f loat distance)

524 {

525 const f loat m_lowerGpsBound = 3.0;

526 f loat result = 0.0;

527

528 // Apply exp(−(x+m lowerGpsBound)) to avoid dropping down to 0
529 i f (distance < m_lowerGpsBound)

530 result = 1.0;

531 else
532 result = exp(m_lowerGpsBound - fabs(distance));

533

534 return result;

535 }

536

537 } // namespace ibeo
538 } // namespace appbase
539 } // namespace worker

D.2 Landmark

Definition of a landmark struct.

1 // Landmark.hpp
2 // created : 2011−03−16
3 // author : Jan Girlich
4

5 #ifndef LANDMARK_HPP

6 #define LANDMARK_HPP

7

8 #include <IbeoAPI/Point3D.hpp>

9 #include <boost/numeric/ublas/matrix.hpp>

10

11 using namespace std;

12 using namespace ibeo;

13

14 struct Landmark

15 {

16 Point3D mean;

17 boost::numeric::ublas::matrix<float > covariance;

18 size_t index;

19 } ;

20

21 #endif

170

D.3 Extended Kalman Filter

D.3 Extended Kalman Filter

This is an implementation of an extended Kalman filter used in the FastSLAM
worker.

1 #include <IbeoAPI/Point3D.hpp>

2 #include <IbeoAPI/Position3D.hpp>

3

4 #include <boost/numeric/ublas/matrix.hpp>

5 #include "ibeoextended/recttracking/InvertMatrix.hpp"

6 #include "./coordconversion.hpp"

7 #include <ibeobasic/worker/fastslam/Landmark.hpp>

8

9 typedef boost::numeric::ublas::matrix<float > Matrix;

10 typedef boost::numeric::ublas::identity_matrix<float > IdentityMatrix;

11 typedef boost::numeric::ublas::zero_matrix<float > ZeroMatrix;

12

13 using namespace std;

14 using namespace ibeo;

15

16 class ExtendedKalmanFilter

17 {

18 public:
19 /**
20 * Constructor , nothing done here
21 **/
22 ExtendedKalmanFilter();

23

24 /**
25 * Destructor , nothing done here
26 **/
27 ~ExtendedKalmanFilter();

28

29 /**
30 * Assume the f i r s t given Point3D to be the origin of a local
31 * coordinate system and return the spherical coordinates of the
32 * second point within this coordinate system.
33 *

34 * @param Point3D origin of the local coordinate system
35 * @param Point3D to return in local , spherical coordinates
36 * @return Point3D the second param in local , spherical coordinates
37 *

38 * See formula (3.29) on page 36 in FastSLAM by Sebastian Thrun
39 **/
40 Point3D getRelativeSphericCoords_deprecated(Point3D origin, Point3D point);

41

42 /**
43 * This function basically is an inverse function of
44 * getRelativeSphericCoords .
45 *

46 * @param Point3D origin of the local coordinate system
47 * @param Point3D to return in global , cartesian coordinates
48 * @return Point3D the second param in global , cartesian coordinates
49 *

50 * See formula (3.29) on page 36 in FastSLAM by Sebastian Thrun
51 **/
52 Point3D getAbsoluteCartesianCoords_deprecated(Point3D origin, Point3D point);

53

54 /**
55 * Calculate Jacobian matrix with respect to a landmark from the landmarks position and the
56 * updated robot pose of the particle .
57 *

58 * @param Current , estimated robot pose of the particle

171

D FastSLAM

59 * @param Mean position of the landmark before updating
60 * @return Jacobian matrix
61 *

62 * See formula (3.36) on page 37 in FastSLAM by Sebastian Thrun
63 **/
64 Matrix landmarkJacobian(Position3D estimatedRobotPose, Point3D landmarkEKFMean);

65 Matrix landmarkJacobian_original(Position3D estimatedRobotPose, Point3D landmarkEKFMean);

66

67 /**
68 * Calculate Innovation Covariance matrix using a Jacobian matrix , the landmarks EKF covariance
69 * and the linearized measurement noise
70 *

71 * @param Jacobian matrix with respect to the landmark
72 * @param Covariance matrix of the landmarks EKF
73 * @param Linearized vehicle measurement noise
74 * @return Innovation Covariance matrix
75 *

76 * See formula (3.31) on page 36 in FastSLAM by Sebastian Thrun
77 **/
78 Matrix innovationCovariance(Matrix landmarkJacobian, Matrix landmarkEKFCovariance, Matrix

measurementNoise);

79

80 /**
81 * Calculate EKF Gain from earl ier EKF Covariance matrix , Jacobian and Innovation Covariance
82 *

83 * @param Jacobian matrix with respect to the landmark
84 * @param Covariance matrix of the landmarks EKF
85 * @param Innovation Covariance matrix
86 * @return EKF gain matrix
87 *

88 * See formula (3.32) on page 36 in FastSLAM by Sebastian Thrun
89 **/
90 Matrix ekfGain(Matrix landmarkJacobian, Matrix landmarkEKFCovariance, Matrix innovationCovariance)

;

91

92 /**
93 * Calculate EKF Mean from earl ier EKF Mean position , EKF Gain and the positions of sensor

observation
94 * and position of expected measurement of the landmark
95 *

96 * @param Landmarks previous EKF Mean
97 * @param EKF Gain
98 * @param Position of the landmarks observation
99 * @param Position of the landmarks expected measurement

100 * @return EKF Mean landmark position
101 *

102 * See formula (3.33) on page 36 in FastSLAM by Sebastian Thrun
103 **/
104 Point3D ekfMean(Point3D landmarkEKFMean, Matrix ekfGain, Point3D observedLandmarkPosition, Point3D

expectedLandmarkPosition);

105

106 /**
107 * Calculate EKF Covariance from EKF Gain matrix , Jacobian matrix and previous EKF Covariance
108 *

109 * @param Jacobian matrix with respect to the landmark
110 * @param Covariance matrix of the landmarks EKF
111 * @param EKF Gain
112 * @return EKF Covariance matrix
113 *

114 * See formula (3.34) on page 36 in FastSLAM by Sebastian Thrun
115 **/
116 Matrix ekfCovariance(Matrix landmarkJacobian, Matrix landmarkEKFCovariance, Matrix ekfGain, Matrix

measurementNoise);

117

118 /**

172

D.3 Extended Kalman Filter

119 * Convert a Point3D from cartesian coordinates to spherical
120 * coordinates
121 *

122 * @param Point3D containing x, y and z coordinate
123 * @return Point3D containing rho , phi and theta coordinate
124 **/
125 Point3D cart2sphere_deprecated(Point3D input);

126

127 /**
128 * Convert a Point3D from spherical coordinates to cartesian
129 * coordinates
130 *

131 * @param Point3D containing rho , phi and theta coordinate
132 * @return Point3D containing x, y and z coordinate
133 **/
134 Point3D sphere2cart_deprecated(Point3D input);

135

136 private:
137 /**
138 * Create a 3,1−matrix representing a standing vector of a point
139 * Including a cartesian to spherical coordinates transformation
140 *

141 * @param Point3D to create a matrix of
142 * @return A 3,1−matrix containing x, y and z of the input point
143 **/
144 Matrix createMatrixFromPoint3D(Point3D pt);

145

146 /**
147 * Create a Point3D from a 3,1−matrix holding the x, y and z
148 * coordinate
149 *

150 * @param A 3,1−matrix containing x, y and z coordinate
151 * @return A Point3D object
152 **/
153 Point3D createPoint3DFromMatrix(Matrix mat);

154 };

1 #include <IbeoAPI/Math.hpp>

2 #include "./ekf.hpp"

3 #include <iostream>

4 #include <boost/numeric/ublas/io.hpp>

5

6 using namespace ibeo;

7

8 ExtendedKalmanFilter::ExtendedKalmanFilter()

9 {

10 }

11

12 ExtendedKalmanFilter::~ExtendedKalmanFilter()

13 {

14 }

15

16 Matrix ExtendedKalmanFilter::landmarkJacobian(Position3D estimatedRobotPose, Point3D landmarkEKFMean

)

17 {

18 return IdentityMatrix(3,3);

19 }

20

21 Matrix ExtendedKalmanFilter::landmarkJacobian_original(Position3D estimatedRobotPose, Point3D

landmarkEKFMean)

22 {

23 const f loat r = landmarkEKFMean.getX() - estimatedRobotPose.getX();

24 const f loat t = landmarkEKFMean.getY() - estimatedRobotPose.getY();

25 const f loat p = landmarkEKFMean.getZ() - estimatedRobotPose.getZ();

173

D FastSLAM

26

27 Matrix jacMat (3, 3);

28

29 jacMat(0, 0) = cos(p) * sin(t);

30 jacMat(0, 1) = sin(p) * sin(t);

31 jacMat(0, 2) = cos(t);

32 jacMat(1, 0) = cos(p) * cos(t)/r;

33 jacMat(1, 1) = cos(t) * sin(p)/r;

34 jacMat(1, 2) = -(sin(t)/r);

35 jacMat(2, 0) = -((1/sin(t) * sin(p))/r);

36 jacMat(2, 1) = cos(p) * (1/sin(t))/r;

37 jacMat(2, 2) = 0;

38

39 return jacMat;

40 }

41

42 Matrix ExtendedKalmanFilter::innovationCovariance(Matrix landmarkJacobian, Matrix

landmarkEKFCovariance, Matrix measurementNoise)

43 {

44 Matrix innoCovMat (3, 3);

45

46 innoCovMat = prod(landmarkJacobian, landmarkEKFCovariance);

47 innoCovMat = prod(innoCovMat, trans(landmarkJacobian));

48 innoCovMat += measurementNoise;

49

50 return innoCovMat;

51 }

52

53 Matrix ExtendedKalmanFilter::ekfGain(Matrix landmarkJacobian, Matrix landmarkEKFCovariance, Matrix

innovationCovariance)

54 {

55 Matrix innoCovMatInv (ZeroMatrix(3, 3));

56

57 i f (InvertMatrix(innovationCovariance, innoCovMatInv))

58 {

59 Matrix gain (3, 3);

60 gain = prod(landmarkEKFCovariance, trans(landmarkJacobian));

61 gain = prod(gain, innoCovMatInv);

62 return gain;

63 }

64 else
65 {

66 return IdentityMatrix();

67 }

68 }

69

70 Point3D ExtendedKalmanFilter::ekfMean(Point3D landmarkEKFMean, Matrix ekfGain, Point3D

observedLandmarkPosition, Point3D expectedLandmarkPosition)

71 {

72 Matrix measurementInnovation (3, 1);

73

74 measurementInnovation = createMatrixFromPoint3D(observedLandmarkPosition -

expectedLandmarkPosition);

75

76 Matrix oldMean = createMatrixFromPoint3D(landmarkEKFMean);

77

78 Matrix newMean = ZeroMatrix(3, 1);

79

80 newMean = oldMean + prod(ekfGain, measurementInnovation);

81

82 Point3D newMeanPt(createPoint3DFromMatrix(newMean));

83

84 return newMeanPt;

85 }

86

174

D.4 Particle

87 Matrix ExtendedKalmanFilter::ekfCovariance(Matrix landmarkJacobian, Matrix landmarkEKFCovariance,

Matrix ekfGain, Matrix measurementNoise)

88 {

89 // I = IdentityMatrix
90 // K = Gain
91 // H = Jacobian
92 // P = Covariance
93 // Q = Measurment Noise
94

95 // IKH = IdentityMatrix(sizeOfStateVector) − prod(K, H) ;
96 // PIKHt = prod(P, trans(IKH)) ;
97 // QKt = prod(Q, trans(K)) ;
98 // P = prod(IKH, PIKHt) + prod(K, QKt) ;
99

100 Matrix idGainJa = IdentityMatrix(3,3) - prod(ekfGain, landmarkJacobian);

101 Matrix gainIdJa = prod(landmarkEKFCovariance, trans(idGainJa));

102 Matrix measureGain = prod(measurementNoise, trans(ekfGain));

103 Matrix newCov = prod(idGainJa, gainIdJa) + prod(ekfGain, measureGain);

104

105 return newCov;

106 }

107

108 Matrix ExtendedKalmanFilter::createMatrixFromPoint3D(Point3D pt)

109 {

110 // standing vectors
111 Matrix result (3, 1);

112 result(0,0) = pt.getX();

113 result(1,0) = pt.getY();

114 result(2,0) = pt.getZ();

115 return result;

116 }

117

118 Point3D ExtendedKalmanFilter::createPoint3DFromMatrix(Matrix mat)

119 {

120 // standing vectors
121 Point3D result;

122 result.setX(mat(0,0));

123 result.setY(mat(1,0));

124 result.setZ(mat(2,0));

125 return result;

126 }

D.4 Particle

Implementation of a particle for the particle filter.

1 // Particle .hpp
2 // created : 2011−03−16
3 // author : Jan Gries , Jan Girlich
4

5 #ifndef PARTICLE_HPP

6 #define PARTICLE_HPP

7

8 #include <IbeoAPI/Point2D.hpp>

9 #include <IbeoAPI/Point3D.hpp>

10 #include <IbeoAPI/Position3D.hpp>

11 #include <ibeobasic/worker/fastslam/Landmark.hpp>

12 #include <IbeoAPI/Configurable.hpp>

13 #include <vector>

14 #include <deque>

175

D FastSLAM

15 #include <list>

16 #include <string>

17

18 // Boost includes
19 #include <boost/random/linear_congruential.hpp>

20 #include <boost/random/variate_generator.hpp>

21 #include <boost/random/normal_distribution.hpp>

22 #include <boost/random/uniform_real.hpp>

23 #include <boost/random/mersenne_twister.hpp>

24 #include <boost/date_time/posix_time/posix_time.hpp>

25

26 using namespace std;

27 using namespace ibeo;

28

29 typedef vector<Landmark> Sector;

30 typedef deque<deque<Sector> > SectorMap;

31 typedef list<Position3D> Position3DCollection;

32 typedef vector<Point3D> ZCollection;

33

34 class Particle

35 {

36

37 private:
38 Position3DCollection m_odometryUpdateList;

39 Sector m_map;

40 f loat m_rating;

41 f loat m_normRating;

42 Point2D m_zeroOfMap;

43 Position3D m_startPosition;

44 static boost::mt19937 generator;

45 vector<Landmark> simpleLmList;

46 size_t m_landmarkindex;

47 f loat m_perceptionrange;

48 string m_id;

49

50 ibeo::Position3D sampleMotionModelOdometry(

51 ibeo::Position3D oldPosition,

52 ibeo::Position3D newPosition,

53 ibeo::Position3D originatingSample,

54 f loat alphaYaw1,

55 f loat alphaPitch1,

56 f loat alphaTrans,

57 f loat alphaYaw2,

58 f loat alphaPitch2,

59 f loat alphaRoll,

60 f loat fYaw1,

61 f loat fYaw2);

62 Sector::iterator findLandmarkiteratorToIndexOfLandmark(size_t index);

63 double sample(double deviation);

64 double atan2pitch(double y, double x);

65 void extendSectorMap (const Landmark &landmark);

66 void addLandmark (Landmark landmark);

67 bool distLargerLimit(Point3D p1, Point3D p2, f loat maxDist);

68

69 public:
70 /**
71 * constuctor
72 * creates a particle with rating of 1.0
73 *

74 * @param Position3D startingposition
75 */
76 Particle(Position3D);

77

78 /**
79 * destuctor

176

D.4 Particle

80 */
81 ~Particle(){};

82

83 /**
84 * add a landmark to the simple map of the particle
85 */
86 void simpleAddLandmark (Landmark landmark);

87

88 /**
89 * returns a l i s t of landmarks that stored in the map
90 */
91 vector<Landmark> simpleGetLmList();

92

93 /**
94 * add a landmark to the map of the particle
95 */
96 void addLandmarkToMap (Landmark landmark);

97

98 /**
99 * overwrites the landmark in the map

100 */
101 void updateLandmark (Landmark landmark);

102

103 /**
104 * add odometrydata to the trajectory of the particle
105 */
106 void addOdometryUpdate (const Position3D &odometryUpdate);

107

108 /**
109 * returns the last position of the particle
110 */
111 Position3D getlastOdometryUpdate();

112

113 /**
114 * returns the second last position of the particle
115 */
116 Position3D getSecondlastOdometryUpdate();

117

118 /**
119 * returns the rating of the particle , that represents whether the new observations are consistent

to the landmarks stored in the map
120 */
121 f loat getRating() const;
122

123 /**
124 * sets the rating of the particle , that represents whether the new observations are consistent to

the landmarks stored in the map
125 */
126 void setRating(f loat rating);

127

128 /**
129 * returns the normed rating of the particle , set by setNormedRating()
130 *

131 * @return float Normed rating
132 */
133 f loat getNormRating ();

134

135 /**
136 * sets the normed rating of the particle
137 *

138 * @param float Normed rating
139 */
140 void setNormRating(f loat rating);

141

142 /**

177

D FastSLAM

143 * returns a vector with the stored landmarks arount the position
144 */
145 Sector getMap (Position3D);

146

147 /**
148 * calculates a new position using the trajectory of the particle , the odomitridaten of the

vehicle and some random parameter
149 */
150 void calculateNewPose(

151 Position3D &lastPosition,

152 Position3D &newPosition,

153 f loat alphaYaw1,

154 f loat alphaPitch1,

155 f loat alphaTrans,

156 f loat alphaYaw2,

157 f loat alphaPitch2,

158 f loat alphaRoll,

159 f loat fYaw1,

160 f loat fYaw2);

161

162 /**
163 * return the hole trajectory of the particle
164 */
165 Position3DCollection getOdometryList();

166

167 /**
168 * Gives al l Landmarks stored in this Particle
169 *

170 * @return Sector of a l l stored Landmark objects
171 **/
172 Sector getAllLandmarks();

173 };

174

175 #endif

1 // Particle .cpp
2 // created : 2011−03−16
3 // author : Jan Gries , Jan Girlich
4

5 #include <ibeobasic/worker/fastslam/Particle.hpp>

6 #include <sstream>

7

8 typedef boost::numeric::ublas::identity_matrix<float > IdentityMatrix;

9

10 ibeo::Position3D Particle::sampleMotionModelOdometry(

11 ibeo::Position3D oldPosition,

12 ibeo::Position3D newPosition,

13 ibeo::Position3D originatingSample,

14 f loat alphaYaw1,

15 f loat alphaPitch1,

16 f loat alphaTrans,

17 f loat alphaYaw2,

18 f loat alphaPitch2,

19 f loat alphaRoll,

20 f loat fYaw1,

21 f loat fYaw2)

22 {

23 // the angles in movementVector are not used
24 ibeo::Position3D movementVector = newPosition - oldPosition;

25 traceWarning("") << "movementVector: " << movementVector.getX() << " " << movementVector.getY() <<

" " << movementVector.getZ() << std::endl ;

26 i f (movementVector.getX() == 0 && movementVector.getY() == 0 && movementVector.getZ() == 0)

27 traceWarning("") << "sampleMotionModelOdometry = (0,0,0)" << std::endl;

28

178

D.4 Particle

29 // calculating the angles for the f i r s t rotation to point in the direction of movementVector
30 f loat rot1yaw = atan2 (movementVector.getY(), movementVector.getX()) - oldPosition.getYawAngle();

31 f loat rot1pitch = atan2pitch (sqrt(movementVector.getY() * movementVector.getY() + movementVector.

getX() * movementVector.getX()), movementVector.getZ()) - oldPosition.getPitchAngle();

32

33 // calculating the distance to the new position (length of movementVector)
34 f loat trans = sqrt(movementVector.getX() * movementVector.getX() + movementVector.getY() *

movementVector.getY() + movementVector.getZ() * movementVector.getZ());

35

36 // calculating the angles to turn to the final orientation at the newPosition
37 f loat rot2yaw = newPosition.getYawAngle() - rot1yaw - oldPosition.getYawAngle();

38 f loat rot2pitch = newPosition.getPitchAngle() - rot1pitch - oldPosition.getPitchAngle();

39 f loat rot2roll = newPosition.getRollAngle() - oldPosition.getRollAngle();

40

41 // add noise , could be improved by considering the curves actually travelled and its dependencies
42 f loat rot1yawSample = rot1yaw + (fYaw1 * rot1yaw) - sample(alphaYaw1 * rot1yaw);

43 f loat rot1pitchSample = rot1pitch - sample(alphaPitch1 * rot1pitch);

44

45 f loat transSample = trans - sample(alphaTrans * trans);

46

47 // rot2 usually depends on rot1 , but this dependency is disregarded here
48 // usually a small rot1 leads to a small rot2
49 f loat rot2yawSample = rot2yaw + (fYaw2 * rot2yaw) - sample(alphaYaw2 * rot2yaw);

50 f loat rot2pitchSample = rot2pitch - sample(alphaPitch2 * rot2pitch);

51

52 f loat rot2rollSample = rot2roll - sample(alphaRoll * rot2roll);

53

54 // minimize the influence of small movements l ike they occur from
55 // noisy GPS data when the vehicle is not moving, to prevent
56 // sudden unwanted extreme orientation changes
57 f loat factor = 1;

58 i f (movementVector.getPoint().distFromOrigin() < 0.1)

59 {

60 factor = movementVector.getPoint().distFromOrigin();

61 }

62

63 // now convert the resulting samples into cartesian coordinates
64 // f i r s t convert movementVectorSample:
65 ibeo::Position3D relativePositionSample;

66 relativePositionSample.setX(transSample * cos(rot1yawSample + originatingSample.getYawAngle()) *

cos(rot1pitchSample + originatingSample.getPitchAngle()));

67 relativePositionSample.setY(transSample * sin(rot1yawSample + originatingSample.getYawAngle()) *

cos(rot1pitchSample + originatingSample.getPitchAngle()));

68 relativePositionSample.setZ(-transSample * sin(rot1pitchSample + originatingSample.getPitchAngle

()));

69 relativePositionSample.setYawAngle(originatingSample.getYawAngle() + (rot1yawSample +

rot2yawSample)*factor);

70 relativePositionSample.setPitchAngle(originatingSample.getPitchAngle() + (rot1pitchSample +

rot2pitchSample)*factor);

71 relativePositionSample.setRollAngle(originatingSample.getRollAngle() + (rot2rollSample)*factor);

72

73 // add the estimated motion to the originating sample position in an
74 // absolute coordinate system
75 ibeo::Position3D absolutePositionSample;

76 absolutePositionSample.setX(relativePositionSample.getX() + originatingSample.getX());

77 absolutePositionSample.setY(relativePositionSample.getY() + originatingSample.getY());

78 absolutePositionSample.setZ(relativePositionSample.getZ() + originatingSample.getZ());

79 absolutePositionSample.setYawAngle(relativePositionSample.getYawAngle());

80 absolutePositionSample.setPitchAngle(relativePositionSample.getPitchAngle());

81 absolutePositionSample.setRollAngle(relativePositionSample.getRollAngle());

82

83 return absolutePositionSample;

84 }

85

86 Position3DCollection Particle::getOdometryList()

179

D FastSLAM

87 {

88 return m_odometryUpdateList;

89 }

90

91 void Particle::simpleAddLandmark(Landmark landmark)

92 {

93 simpleLmList.push_back(landmark);

94 }

95

96 vector<Landmark> Particle::simpleGetLmList()

97 {

98 return simpleLmList;

99 }

100

101 double Particle::atan2pitch(double y, double x)

102 {

103 double result = 0;

104

105 i f (x != 0) // i f x == 0 then do nothing and return 0
106 {

107 result = - atan(y / x) + M_PI / 2;

108

109 i f (result > M_PI / 2)

110 {

111 result -= M_PI;

112 }

113 }

114

115 return result;

116 }

117

118 double Particle::sample(double deviation)

119 {

120 boost::normal_distribution<> norm_dist(0, 1);

121 boost::variate_generator<boost::mt19937&, boost::normal_distribution<> > boost_nrand(generator,

norm_dist);

122

123 return boost_nrand() * fabs(deviation);

124 }

125

126 boost::mt19937 Particle::generator(static cast <unsigned int>(std::time(NULL)));
127

128 Particle::Particle(Position3D startPosition)

129 {

130 m_id = "0";

131 m_rating = 0;

132 m_landmarkindex = 0;

133 m_perceptionrange = 30.0;

134 m_startPosition = startPosition;

135 }

136

137 void Particle::addLandmarkToMap (Landmark landmark)

138 {

139 addLandmark(landmark);

140 }

141

142 void Particle::addLandmark(Landmark landmark)

143 {

144 landmark.index = m_landmarkindex;

145 ++m_landmarkindex;

146 m_map.push_back(landmark);

147 }

148

149 void Particle::calculateNewPose(Position3D &lastPosition, Position3D &newPosition, f loat alphaYaw1,

f loat alphaPitch1, f loat alphaTrans, f loat alphaYaw2, f loat alphaPitch2, f loat alphaRoll, f loat

180

D.4 Particle

fYaw1, f loat fYaw2)

150 {

151 Position3D temp = sampleMotionModelOdometry(lastPosition, newPosition, getlastOdometryUpdate(),

alphaYaw1, alphaPitch1, alphaTrans, alphaYaw2, alphaPitch2, alphaRoll, fYaw1, fYaw2);

152 traceWarning("") << "Particle::sampleMotionModelOdometry() returns " << temp.getX() << " , " <<

temp.getY() << " , " << temp.getZ() << " Yaw:" << temp.getYawAngle() << " Pitch:" << temp.

getPitchAngle() << " Roll: " << temp.getRollAngle() << std::endl;

153 addOdometryUpdate(temp);

154 }

155

156

157 void Particle::addOdometryUpdate (const Position3D &odometryUpdate)

158 {

159 m_odometryUpdateList.push_back(odometryUpdate);

160 }

161

162

163 Position3D Particle::getlastOdometryUpdate()

164 {

165 i f (m_odometryUpdateList.size() < 1)

166 return m_startPosition;

167 else
168 return m_odometryUpdateList.back();

169 }

170

171 Position3D Particle::getSecondlastOdometryUpdate()

172 {

173

174 i f (m_odometryUpdateList.size() < 1)

175 return m_startPosition;

176 else i f (m_odometryUpdateList.size() == 1)

177 return m_startPosition;

178 else
179 {

180 Position3DCollection::reverse_iterator rit = m_odometryUpdateList.rbegin();

181 return *(rit);

182 }

183 }

184

185

186 f loat Particle::getRating() const
187 {

188 return m_rating;

189 }

190

191 void Particle::setRating (f loat rating)

192 {

193 m_rating = rating;

194 assert(getRating() == rating);

195 }

196

197 f loat Particle::getNormRating()

198 {

199 return m_normRating;

200 }

201

202 void Particle::setNormRating (f loat rating)

203 {

204 m_normRating = rating;

205 assert(getNormRating() == rating);

206 }

207

208 void Particle::updateLandmark(Landmark landmark)

209 {

210 Sector::iterator iterSector = findLandmarkiteratorToIndexOfLandmark(landmark.index);

181

D FastSLAM

211 assert(iterSector->index == landmark.index);

212 *iterSector = landmark;

213 }

214

215 Sector::iterator Particle::findLandmarkiteratorToIndexOfLandmark(size_t index)

216 {

217 Sector::iterator iterSector;

218 for (iterSector = m_map.begin(); iterSector != m_map.end(); ++iterSector)

219 {

220 i f (iterSector->index == index)

221 {

222 return iterSector;

223 }

224 }

225 traceError("") << "Index: " << index << endl;

226 assert(false); //you should not be here !
227 return iterSector;

228 }

229

230 Sector Particle::getMap (Position3D position)

231 {

232 Sector returnSector;

233 for (Sector::iterator iterSector = m_map.begin(); iterSector != m_map.end(); ++iterSector)

234 {

235 i f(! distLargerLimit(position.getPoint(), iterSector->mean, m_perceptionrange))

236 {

237 returnSector.push_back(*iterSector);

238 }

239 }

240 return returnSector;

241 }

242

243 bool Particle::distLargerLimit(Point3D p1, Point3D p2, f loat maxDist)

244 {

245 i f (fabs(p1.getX() - p2.getX()) > maxDist)

246 return true;
247 else i f (fabs(p1.getY() - p2.getY()) > maxDist)

248 return true;
249 else i f (fabs(p1.getZ() - p2.getZ()) > maxDist)

250 return true;
251 else i f (p1.dist(p2) > maxDist)

252 return true;
253 else
254 return false;
255 }

256

257 Sector Particle::getAllLandmarks()

258 {

259 return m_map;

260 }

D.5 Likelihood table

The likelihood table holds all likelihoods between the landmarks within a particle
and the observations made.

1

2 #ifndef likelihoodtable_HPP

3 #define likelihoodtable_HPP

4

182

D.5 Likelihood table

5 #include <math.h>

6

7 #include <boost/numeric/ublas/matrix.hpp>

8 #include <boost/numeric/ublas/lu.hpp>

9 #include "ibeoextended/recttracking/InvertMatrix.hpp"

10 typedef boost::numeric::ublas::matrix<float > Matrix;

11 typedef boost::numeric::ublas::permutation_matrix<size_t> PermMatrix;

12 typedef boost::numeric::ublas::identity_matrix<float > IdentityMatrix;

13

14 #include <IbeoAPI/ScanPoint.hpp>

15 #include <IbeoAPI/Point3D.hpp>

16 #include <IbeoAPI/Position3D.hpp>

17 #include "ibeograph/Preferences.hpp"

18 #include "ibeobasic/worker/fastslam/ekf.hpp"

19

20 using namespace std;

21 namespace ibeo {

22 namespace appbase {

23 namespace worker {

24

25 class Likelihoodtable

26 {

27 public:
28 /**
29 * Constructor
30 *

31 * @param Position3D The particles current robot pose
32 * @param Position3D The particles previous robot pose
33 * @param Matrix(3 ,3) measurement noise of the sensor
34 **/
35 Likelihoodtable(Position3D lastRobotPose, Position3D secondLastRobotPose, Matrix matrix);

36

37 /**
38 * Destructor
39 **/
40 ~Likelihoodtable();

41

42 /**
43 * Adds a new expected Landmark position to the table and calculates
44 * the likelihoods .
45 *

46 * @param Landmark the Landmark
47 **/
48 void addLandmark(Landmark landmark);

49

50 /**
51 * Adds a l i s t of new expected Landmark positions to the table and
52 * calculates the likelihoods . Replaces a l l prior added Landmarks.
53 *

54 * @param vector<Landmark> Landmarks
55 **/
56 void initLandmarks(vector<Landmark> landmarks);

57

58 /**
59 * Adds a new observation to the table and calculates the
60 * likelihoods .
61 *

62 * @param Point3D Observation
63 **/
64 void addObservation(Point3D point3D);

65

66 /**
67 * Adds al l observations at once to the table and calculates the
68 * likelihoods . Replaces a l l prior added Observations .
69 *

183

D FastSLAM

70 * @param vector<Point3D> Observations
71 **/
72 void initObservations(vector<Point3D> observations);

73

74 /**
75 * Call this method after adding Landmarks and Observations to
76 * calculate the Likelihoods and f i l l the table .
77 **/
78 void calculateLikelihoods();

79

80 /**
81 * Get the value of the highest Likelihood for a given Observation .
82 *

83 * @param Point3D Observation
84 * @return float maximum Likelihood
85 **/
86 f loat getMaxLikelihoodForObservation(Point3D point3D);

87

88 /**
89 * Get the expected Landmark position of the Landmark with the
90 * highest Likelihood for a given Observation .
91 *

92 * @param Point3D Observation
93 * @return Point3D expected Position of the Landmark with the maximum Likelihood
94 **/
95 Landmark getLandmarkWithMaxLikelihood(Point3D point3D);

96

97 /**
98 * Finds the globally best Likelihood and removes al l other
99 * Likelihoods for this Landmark and Observation . Does this for a l l

100 * Likelihoods and thus adding Landmarks or Observations afterwards
101 * won’ t work.
102 **/
103 void findBestAssociations();

104

105 /**
106 * Finds the globally best Likelihood and removes al l other
107 * Likelihoods for a l l Landmarks and Observations . Might leave
108 * Landmarks without any association in some cases where an
109 * observation cannot be associated unambigously .
110 **/
111 void findBestGlobalAssociations();

112

113 /**
114 * Returns the internal table storing al l Likelihoods . For debugging
115 * purposes only .
116 **/
117 Matrix getTable();

118

119 private:
120 Matrix m_likelihoods;

121 Position3D m_lastRobotPose;

122 Position3D m_secondLastRobotPose;

123 Matrix m_measurementNoise;

124

125 // colum indicators
126 vector<Point3D> m_observations;

127

128 // row indicators
129 vector<Landmark> m_landmarks;

130 vector<Point3D> m_expLmPos;

131

132 /**
133 * Returns the Observation with the highest likelihood for the
134 * given expected Landmark position . Needed for checking i f the

184

D.5 Likelihood table

135 * expected Landmark Position does not have a better possible
136 * association .
137 *

138 * @param Point3D expected Landmark position
139 * @return Point3D Observation
140 **/
141 Point3D getObsWithMaxLikelihood(Landmark landmark);

142

143 /**
144 * Calculate the Likelihood for the ce l l in ’row’ and ’column’ and
145 * insert i t .
146 *

147 * @param size t Row
148 * @param size t Column
149 **/
150 void calculateLikelihood(size_t row, size_t column);

151

152 /**
153 * Fetches the index of the Observation l i s t indicating the
154 * Observation with the highest Likelihood value . This function is a
155 * helper for fetching the Likelihood value or the associated
156 * landmark.
157 *

158 * @param Point3D Observation
159 * @return size t index of the Observation l i s t
160 **/
161 size_t getIndexOfObservation(Point3D observation);

162

163 /**
164 * Fetches the index of the Landmark l i s t indicating the Landmark
165 * with the highest Likelihood value . This function is a helper for
166 * fetching the Likelihood value or the associated landmark.
167 *

168 * @param size t index of the Observation l i s t
169 * @return size t index of the Landmark l i s t
170 **/
171 size_t getIndexOfLandmarkWithMaxLikelihood(size_t observation);

172

173 /**
174 * Returns the sign of the determinant of the given matrix . This is
175 * a helper function to calculate the determinant .
176 *

177 * @param Matrix matrix for which to calculate the determinants sign
178 * @return int sign of determinant of given matrix
179 **/
180 int determinant_sign(const PermMatrix& permMatrix);

181

182 /**
183 * Returns the the determinant of the given matrix .
184 *

185 * @param Matrix matrix for which to calculate the determinant
186 * @return float determinant of given matrix
187 **/
188 f loat determinant(Matrix& matrix);

189

190 /**
191 * Efficiently tests i f the distance between two given points is
192 * larger than a maximum.
193 *

194 * @param Point3D f i r s t point
195 * @param Point3D second point
196 * @param float maximum distance
197 * @return bool true i f distance between point 1 and point 2 is
198 * larger than maximum distance , else false .
199 **/

185

D FastSLAM

200 bool distLargerLimit(Point3D p1, Point3D p2, f loat maxDist);

201 };

202

203 }

204 }

205 }

206

207 #endif

1 // Likelihoodtable .cpp
2 // Likelihood table implementation using a Matrix container
3 // created : 2011−03−11
4 // author : Jan Girlich
5

6 #include <ibeobasic/worker/fastslam/Likelihoodtable.hpp>

7 #include <limits>

8 #include <algorithm>

9 #include <boost/bind.hpp>

10

11 using namespace std;

12 namespace ibeo {

13 namespace appbase {

14 namespace worker {

15

16 struct rowMaximum

17 {

18 size_t rowIndex;

19 size_t columnIndex;

20 f loat likelihood;

21 } ;

22

23 f loat m_maxDistance = 3; // in meters
24

25 Likelihoodtable::Likelihoodtable(Position3D lastRobotPose, Position3D secondLastRobotPose, Matrix

measurementNoise)

26 {

27 m_lastRobotPose = lastRobotPose;

28 m_secondLastRobotPose = secondLastRobotPose;

29 m_measurementNoise = measurementNoise;

30 }

31

32 Likelihoodtable::~Likelihoodtable()

33 {

34 }

35

36 void Likelihoodtable::addLandmark(Landmark landmark)

37 {

38 m_landmarks.push_back(landmark);

39 m_likelihoods.resize(m_likelihoods.size1()+1, m_likelihoods.size2());

40

41 for (size_t i=0; i<m_likelihoods.size2(); ++i)

42 {

43 calculateLikelihood(m_likelihoods.size1()-1, i);

44 }

45 }

46

47 void Likelihoodtable::initLandmarks(vector<Landmark> landmarks)

48 {

49 m_landmarks = landmarks;

50 }

51

52 void Likelihoodtable::addObservation(Point3D observation)

53 {

54 m_observations.push_back(observation);

186

D.5 Likelihood table

55 m_likelihoods.resize(m_likelihoods.size1(), m_likelihoods.size2()+1);

56

57 for (size_t i=0; i<m_likelihoods.size1(); ++i)

58 {

59 calculateLikelihood(i, m_likelihoods.size2()-1);

60 }

61 }

62

63 void Likelihoodtable::calculateLikelihoods()

64 {

65 m_likelihoods.resize(m_landmarks.size(), m_observations.size());

66 traceNote("") << "Likelihood Table rows: " << m_likelihoods.size1() << " columns: " <<

m_likelihoods.size2() << endl;

67 for (size_t i=0; i<m_likelihoods.size1(); ++i)

68 {

69 for (size_t j=0; j<m_likelihoods.size2(); ++j)

70 calculateLikelihood(i, j);

71 }

72 }

73

74 void Likelihoodtable::initObservations(vector<Point3D> observations)

75 {

76 m_observations = observations;

77 }

78

79

80 f loat Likelihoodtable::getMaxLikelihoodForObservation(Point3D observation)

81 {

82 size_t observationIndex = getIndexOfObservation(observation);

83 size_t lmIndex = getIndexOfLandmarkWithMaxLikelihood(observationIndex);

84

85 i f ((m_likelihoods.size1() < 1) || (m_likelihoods.size2() < 1))

86 return -1;

87 else
88 return m_likelihoods(lmIndex, observationIndex);

89 }

90

91 Landmark Likelihoodtable::getLandmarkWithMaxLikelihood(Point3D observation)

92 {

93 size_t observationIndex = getIndexOfObservation(observation);

94 size_t lmIndex = getIndexOfLandmarkWithMaxLikelihood(observationIndex);

95

96 i f (m_landmarks.size() < 1)

97 {

98 traceWarning("") << "Landmark requested from Likelihood Table when none was added before" <<

endl;

99 Landmark lm;

100 lm.mean = Point3D(0,0,0);

101 lm.covariance = IdentityMatrix(3,3);

102 return lm;

103 }

104 else
105 return m_landmarks[lmIndex];

106 }

107

108 // Used for checking for better associations
109 Point3D Likelihoodtable::getObsWithMaxLikelihood(Landmark landmark)

110 {

111 // find index for observation
112 size_t landmarkIndex = 0;

113 for (size_t i=0; i<m_landmarks.size(); ++i)

114 i f (m_landmarks[i].mean == landmark.mean)

115 landmarkIndex = i;

116

117 f loat maxLikelihood = 0.0;

187

D FastSLAM

118 size_t index = 0;

119 for (size_t i=0; i<m_likelihoods.size2(); ++i)

120 i f (m_likelihoods(index, landmarkIndex) > maxLikelihood)

121 {

122 maxLikelihood = m_likelihoods(landmarkIndex, i);

123 index = i;

124 }

125

126 return m_observations[index];

127 }

128

129 void Likelihoodtable::findBestAssociations()

130 {

131 f loat lastGlobalMax = numeric_limits<float >::max();
132

133 for (size_t i=0; i<min(m_likelihoods.size1(),m_likelihoods.size2()); ++i)

134 {

135 f loat maxLikelihood = 0;

136 size_t maxRow = std::numeric_limits<std::size_t>::max();

137 size_t maxColumn = std::numeric_limits<std::size_t>::max();

138 for (size_t row=0; row<m_likelihoods.size1(); ++row)

139 {

140 for (size_t column=0; column<m_likelihoods.size2(); ++column)

141 {

142 i f ((m_likelihoods(row, column) > maxLikelihood) && (m_likelihoods(row, column) <

lastGlobalMax))

143 {

144 maxLikelihood = m_likelihoods(row, column);

145 maxRow = row;

146 maxColumn = column;

147 }

148 }

149 }

150

151 i f ((maxRow < std::numeric_limits<std::size_t>::max()) && (maxColumn < std::numeric_limits<std::

size_t>::max()))

152 {

153 lastGlobalMax = maxLikelihood;

154

155 for (size_t row=0; row<m_likelihoods.size1(); ++row)

156 i f (row != maxRow)

157 m_likelihoods(row, maxColumn) = 0;

158

159 for (size_t column=0; column<m_likelihoods.size2(); ++column)

160 i f (column != maxColumn)

161 m_likelihoods(maxRow, column) = 0;

162 }

163 }

164 }

165

166 bool compareRowMaxima(const rowMaximum& i, const rowMaximum& j)

167 {

168 // ’>’ i s descending order
169 return i.likelihood > j.likelihood;

170 }

171

172 void Likelihoodtable::findBestGlobalAssociations()

173 {

174 vector<rowMaximum> globalRowMaxima;

175

176 // get maximum likelihood for each row
177 for (size_t row=0; row<m_likelihoods.size1(); ++row)

178 {

179 rowMaximum maxRowLikelihood;

180 maxRowLikelihood.likelihood = 0.0;

188

D.5 Likelihood table

181

182 for (size_t column=0; column<m_likelihoods.size2(); ++column)

183 {

184 const f loat testedLikelihood = m_likelihoods(row, column);

185 i f (testedLikelihood > maxRowLikelihood.likelihood)

186 {

187 maxRowLikelihood.likelihood = testedLikelihood;

188 maxRowLikelihood.rowIndex = row;

189 maxRowLikelihood.columnIndex = column;

190 }

191 }

192 i f (maxRowLikelihood.likelihood > 0.0)

193 globalRowMaxima.push_back(maxRowLikelihood);

194 }

195

196 sort(globalRowMaxima.begin(), globalRowMaxima.end(), bind(&compareRowMaxima, _1, _2));

197

198 for (vector<rowMaximum>::iterator maxIt = globalRowMaxima.begin(); maxIt != globalRowMaxima.end();

++maxIt)

199 {

200 for (size_t row=0; row<m_likelihoods.size1(); ++row)

201 i f (row != maxIt->rowIndex)

202 m_likelihoods(row, maxIt->columnIndex) = 0;

203

204 for (size_t column=0; column<m_likelihoods.size2(); ++column)

205 i f (column != maxIt->columnIndex)

206 m_likelihoods(maxIt->rowIndex, column) = 0;

207 }

208 }

209

210 Matrix Likelihoodtable::getTable()

211 {

212 return m_likelihoods;

213 }

214

215

216 size_t Likelihoodtable::getIndexOfObservation(Point3D observation)

217 {

218 // find index for observation
219 size_t observationIndex = 0;

220 for (size_t i=0; i<m_observations.size(); ++i)

221 i f (m_observations[i] == observation)

222 observationIndex = i;

223

224 return observationIndex;

225 }

226

227 size_t Likelihoodtable::getIndexOfLandmarkWithMaxLikelihood(size_t observationIndex)

228 {

229 f loat maxLikelihood = 0.0;

230 size_t index = 0;

231 for (size_t i=0; i<m_likelihoods.size1(); ++i)

232 i f (m_likelihoods(i, observationIndex) > maxLikelihood)

233 {

234 maxLikelihood = m_likelihoods(i, observationIndex);

235 index = i;

236 }

237

238 return index;

239 }

240

241 // for the formulas see Thrun, Montemerlo: FastSLAM, p. 45
242 void Likelihoodtable::calculateLikelihood(size_t row, size_t column)

243 {

244 ExtendedKalmanFilter ekf = ExtendedKalmanFilter();

189

D FastSLAM

245 f loat likelihood = 0.0;

246

247 i f (! distLargerLimit(m_landmarks[row].mean, m_observations[column], m_maxDistance))

248 {

249 Point3D pt = m_observations[column] - m_landmarks[row].mean;

250 Matrix innovation (3, 1);

251 innovation(0,0) = pt.getX();

252 innovation(1,0) = pt.getY();

253 innovation(2,0) = pt.getZ();

254

255 Matrix jacobian = ekf.landmarkJacobian(m_lastRobotPose, m_landmarks[row].mean);

256

257 Matrix innovationCovariance = ekf.innovationCovariance(jacobian, m_landmarks[row].covariance,

m_measurementNoise);

258

259 // check for calculation instabi l i t ies . This i f clause will
260 // come true i f the matrix holds a NaN
261 i f (! (innovationCovariance(0,0) == innovationCovariance(0,0)))

262 {

263 cout << "=== InnoCov: " << innovationCovariance << endl;

264 cout << "jacobian: " << jacobian << endl;

265 cout << "covariance: " << m_landmarks[row].covariance << endl;

266 cout << "measurementNoise: " << m_measurementNoise << endl;

267 assert(false);
268 }

269

270 Matrix invInnoCov = IdentityMatrix(3,3);

271 i f (! InvertMatrix(innovationCovariance, invInnoCov))

272 traceError("") << "Inversion of Matrix failed. Identity Matrix used instead.\n";

273

274 Matrix likelihoodMatrix = prod(trans(innovation), invInnoCov);

275 likelihoodMatrix = prod(likelihoodMatrix, innovation);

276

277 assert(innovationCovariance(0,0) == innovationCovariance(0,0));

278

279 double denominator = pow(2*M_PI,1.5)*sqrt(determinant(innovationCovariance));

280 double numerator = exp(-0.5 * likelihoodMatrix(0,0));

281 likelihood = numerator/denominator;

282 }

283

284 m_likelihoods(row, column) = likelihood;

285 }

286

287 // Function taken from http://www. anderswallin . net/2010/05/matrix−determinant−with−boostublas/
288 int Likelihoodtable::determinant_sign(const PermMatrix& pm)

289 {

290 int pm_sign=1;

291 size_t size = pm.size();

292 for (size_t i = 0; i < size; ++i)

293 i f (i != pm(i))

294 pm_sign *= -1.0; // swap rows would swap a pair of rows here , so we change sign
295 return pm_sign;

296 }

297

298 f loat Likelihoodtable::determinant(Matrix& m)

299 {

300 PermMatrix pm(m.size1());

301 f loat det = 1.0;

302 i f(boost::numeric::ublas::lu_factorize(m,pm)) {

303 det = 0.0;

304 } else {

305 for(int i = 0; i < (int)m.size1(); i++)

306 det *= m(i,i); // multiply by elements on diagonal
307 det = det * determinant_sign(pm);

308 }

190

D.5 Likelihood table

309 return det;

310 }

311

312 bool Likelihoodtable::distLargerLimit(Point3D p1, Point3D p2, f loat maxDist)

313 {

314 i f (fabs(p1.getX() - p2.getX()) > maxDist)

315 return true;
316 else i f (fabs(p1.getY() - p2.getY()) > maxDist)

317 return true;
318 else i f (fabs(p1.getZ() - p2.getZ()) > maxDist)

319 return true;
320 else i f (p1.dist(p2) > maxDist)

321 return true;
322 else
323 return false;
324 }

325

326 }

327 }

328 }

191

Relaxation

E
The relaxation worker was implemented for smoothing the jumpy trajectory of the
Xsens MTi-G data and to smoothen out large correction steps after longer periods
of dead reckoning like in tunnels.

1 /*
2 * File : relaxationWorker .hpp
3 * Author: Jan Gries
4 * RelaxationWorker .hpp
5 * Copyright (c) Ibeo Automobile Sensor GmbH, 2008−2009
6 * Created on November 24, 2010, 10:18 AM
7 */
8

9 #ifndef _RELAXATIONWORKER_HPP

10 #define _RELAXATIONWORKER_HPP

11

12 #include <IbeoAPI/PositionWGS84.hpp>

13 #include <IbeoAPI/VehicleStateBasic.hpp>

14

15 #include <IbeoAPI/Configurable.hpp>

16

17 #include "ibeobasic/ibeobasicdecl.hpp"

18

19 #include "ibeograph/drain/PositionWGS84Drain.hpp"

20 #include "ibeograph/drain/VehicleStateDrain.hpp"

21 #include "ibeograph/source/PositionWGS84Source.hpp"

22

23 #include "ibeograph/Preferences.hpp"

24

25 #include <boost/circular_buffer.hpp>

26

27 using namespace std;

28 namespace ibeo {

29 namespace appbase {

30 namespace worker {

31

32 /**
33 * \brief This worker modifies the PositionWGS84−data according to the
34 * vehicle state , to get a smoothed trajectory .
35 *

36 * This Worker delayes the PositionWGS Messages !
37 *

38 * Output Data: new WGS84−dates
39 */
40

41 class IBEOBASICDECL RelaxationWorker : public ibeo::appbase::drain::PositionWGS84Drain,

42 public ibeo::appbase::drain::VehicleStateDrain,

43 public ibeo::appbase::source::PositionWGS84Source,

44 public Configurable

45 {

193

E Relaxation

46 public:
47 /// constructor (loads the mounting position out of the configuration f i l e)
48 RelaxationWorker(const ibeo::Preferences& preferences, const std::string& objectname = "");

49

50 ~RelaxationWorker(){};

51

52 static const std::string& getDefaultTypeName() { return CONFIG_TYPE; }

53

54 private:
55 /** Name of the type of the configuration block for this f i l e . */
56 static const std::string CONFIG_TYPE;

57

58 struct State {

59 VehicleStateBasic vehicleState;

60 PositionWGS84 wgs84;

61 };

62

63 INT16 m_deviceID;

64 void setPositionWGS84 (const PositionWGS84 &posWGS84);

65 void setVehicleState (const VehicleStateBasic &vehicleStateBasic);

66 void relaxation();

67 void relaxationalgo(boost::circular_buffer<State>::iterator , boost::circular_buffer<State>::

iterator , boost::circular_buffer<State>::iterator);

68

69 INT16 m_numOfWGS84ToSmooth;

70 INT8 m_numOfIterations;

71 INT8 m_usedDeviceID;

72 INT16 m_numWaitingSteps;

73 VehicleStateBasic m_vehicleState;

74 bool m_getVehicleState;

75 PositionWGS84 m_WGS84;

76 boost::circular_buffer<State> m_statebuffer;

77 int m_newStatesLeft;

78 };

79

80 }

81 }

82 }

83

84 #endif /* RELAXATIONWORKERHPP */

1 #include "RelaxationWorker.hpp"

2

3 #include "Geom3D.hpp"

4 #include <boost/numeric/ublas/matrix.hpp>

5 #include <boost/numeric/ublas/vector.hpp>

6 #include <boost/numeric/ublas/io.hpp>

7 #include <boost/numeric/ublas/operation.hpp>

8

9 using namespace std;

10

11 namespace ibeo{

12 namespace appbase{

13 namespace worker{

14

15 const std::string RelaxationWorker::CONFIG_TYPE = "RelaxationWorker";

16

17 RelaxationWorker::RelaxationWorker(const ibeo::Preferences &preferences, const std::string&

objectname)

18 : Configurable(getDefaultTypeName(), objectname)

19 , m_deviceID(-1)

20 {

21 define (new ParamINT16 ("numOfWGS84ToSmooth", m_numOfWGS84ToSmooth, "Number of WGS84 >0 included

to the relaxationalgorithm.","40"));

194

22 define (new ParamINT8 ("numOfIterations", m_numOfIterations, "Times the algorithm repeats to

improve the result before geting new PositionWGS84","2"));

23 define (new ParamINT8 ("usedDeviceID", m_usedDeviceID, "DeviceID of the Sensor(IMU) should been

used ","31"));

24 define (new ParamINT16 ("numWaitingSteps", m_numWaitingSteps, "Number waiting Steps (in WGS84

message) before restarting relaxationalgorithm.","10"));

25

26 fillValuesOrException (preferences.getConfigValues (getDefaultTypeName(), objectname));

27

28 // Load values from the config f i l e , f i l l them into our
29 // parameters , and throw an exception i f something was invalid .
30 fillValuesValidateOrExcept(preferences.findByTypeAndName(getDefaultTypeName(), objectname));

31

32 m_statebuffer = boost::circular_buffer<State>(m_numOfWGS84ToSmooth);

33 }

34

35 /*
36 * saves the VehicleState and starts the algorithm
37 */
38 void RelaxationWorker::setVehicleState (const VehicleStateBasic &vehicleStateBasic)

39 {

40 i f (m_getVehicleState)

41 {

42 m_vehicleState = vehicleStateBasic;

43 State state;

44 state.vehicleState = vehicleStateBasic;

45 state.wgs84 = m_WGS84;

46 m_statebuffer.push_back(state);

47

48 i f (m_statebuffer.full())

49 {

50 for (int i=0; i<m_numOfIterations; ++i)

51 {

52 relaxation();

53 }

54 for (int i=0; i<m_numWaitingSteps; ++i)

55 {

56 m_signalPositionWGS84(m_statebuffer.front().wgs84);

57 m_statebuffer.pop_front();

58 }

59 }

60 }

61 }

62

63 /*
64 * saves the position
65 */
66 void RelaxationWorker::setPositionWGS84 (const PositionWGS84 &WGS84Basic)

67 {

68 i f(WGS84Basic.getDeviceID() == m_usedDeviceID)

69 {

70 m_WGS84 = WGS84Basic;

71 m_getVehicleState = true;
72 }

73 }

74

75 /*
76 * smooth the States saved in m statebuffer
77 */
78 void RelaxationWorker::relaxation()

79 {

80 traceDebug("") << " start of relaxation" << "\n";

81 for (boost::circular_buffer<State>::iterator iter2 = (m_statebuffer.begin()) + 2; iter2 !=

m_statebuffer.end() ; iter2 = iter2 +1)

82 {

195

E Relaxation

83 boost::circular_buffer<State>::iterator iter1 = iter2 -1;

84 boost::circular_buffer<State>::iterator iter0 = iter1 -1;

85 relaxationalgo(iter0 , iter1 , iter2);

86

87 }

88 }

89

90 in l ine void RelaxationWorker::relaxationalgo(boost::circular_buffer<State>::iterator iter0 , boost::

circular_buffer<State>::iterator iter1 , boost::circular_buffer<State>::iterator iter2)

91 {

92 // calculation of the vector from iter2 to its predecessor based on the angles and vehicleState of
iter2

93 ibeo::VehicleStateBasic::RelativeVehicle::RelativeVehicle relativeVehicleState((iter1)->

vehicleState, iter2->vehicleState); //current and previous interchanged because of need of
negative vector

94

95 ibeo::geom3d::HMatrix m = ibeo::geom3d::rotationRoll (-(iter2->wgs84.getRollAngleInRad()));

96 m = boost::numeric::ublas::prod (ibeo::geom3d::rotationPitch(-(iter2->wgs84.getPitchAngleInRad()))

, m);

97 m = boost::numeric::ublas::prod (ibeo::geom3d::rotationYaw(-(iter2->wgs84.getYawAngleInRad())) ,

m);

98 ibeo::geom3d::HVector relativeWorldState_21 = boost::numeric::ublas::prod(m ,(ibeo::geom3d::

makeHVectorRect(relativeVehicleState.getDeltaPos().getX(),relativeVehicleState.getDeltaPos().

getY(),0)));

99

100 // calculation of the vector from iter0 to its successor based on the angles and vehicleState of
iter0

101 relativeVehicleState = ibeo::VehicleStateBasic::RelativeVehicle::RelativeVehicle((iter1)->

vehicleState, iter0->vehicleState);

102

103 m = ibeo::geom3d::rotationRoll (-(iter0->wgs84.getRollAngleInRad()));

104 m = boost::numeric::ublas::prod (ibeo::geom3d::rotationPitch(-(iter0->wgs84.getPitchAngleInRad()))

, m);

105 m = boost::numeric::ublas::prod (ibeo::geom3d::rotationYaw(-(iter0->wgs84.getYawAngleInRad())) ,

m);

106 ibeo::geom3d::HVector relativeWorldState_01 = boost::numeric::ublas::prod(m ,(ibeo::geom3d::

makeHVectorRect(relativeVehicleState.getDeltaPos().getX(),relativeVehicleState.getDeltaPos().

getY(),0)));

107

108 // new Positions for iter1
109 PositionWGS84 wgs84_01 = iter1->wgs84;

110 wgs84_01.transformFromTangentialPlane(relativeWorldState_01(0),relativeWorldState_01(1), iter0->

wgs84);

111 PositionWGS84 wgs84_21 = iter1->wgs84;

112 wgs84_21.transformFromTangentialPlane(relativeWorldState_21(0),relativeWorldState_21(1), iter2->

wgs84);

113

114 // arithmetic mean
115 iter1->wgs84.setLatitudeInRad((wgs84_01.getLatitudeInRad() + wgs84_21.getLatitudeInRad())/2);

116 iter1->wgs84.setLongitudeInRad((wgs84_01.getLongitudeInRad() + wgs84_21.getLongitudeInRad())/2);

117 iter1->wgs84.setAltitudeInMeterMSL((iter0->wgs84.getAltitudeInMeterMSL() + iter1->wgs84.

getAltitudeInMeterMSL() + relativeWorldState_01(2) + relativeWorldState_21(2))/2);

118 }

119

120 }

121 }

122 }

196

OFF viewer

F
The OFF viewer is implemented in OpenGL and split up in an interface and a
backend.

F.1 ibeo3DVisioFileReader.cpp

This minimal interface defines the mouse control, takes care of displaying the vertices
and painting a grid and axis for orientation.

1 #include <GL/gl.h>

2 #include <GL/glu.h>

3 #include <GL/glut.h>

4

5 #include <math.h>

6 #include <iostream>

7 #include <list>

8 #include <ScanPointArray.cpp>

9

10 const char* VERSION="0.1";

11

12 using std::list;

13

14 // object holding al l the scanpoints
15 ScanPointArray scanpoints = ScanPointArray();

16

17 // camera settings for moving
18 f loat zoom = 15.0f;

19 f loat rotx = 0;

20 f loat roty = 0.001f;

21 f loat tx = 0;

22 f loat ty = 0;

23 int lastx=0;

24 int lasty=0;

25 unsigned char Buttons[3] = {0};

26

27 /**
28 * creates points from the read OFF f i l e
29 **/
30 void pointdraw()

31 {

32

33 // activate and specify pointer to vertex & color array
34 glEnableClientState(GL_VERTEX_ARRAY);

35 glEnableClientState(GL_COLOR_ARRAY);

36

37 GLfloat* vertices = scanpoints.GetCoords();

197

F OFF viewer

38 GLfloat* colors = scanpoints.GetColors();

39

40 glVertexPointer(3, GL_FLOAT, 0, &vertices[0]);

41 glColorPointer(3, GL_FLOAT, 0, &colors[0]);

42

43 // draw our points
44 glDrawArrays(GL_POINTS, 0, scanpoints.getNumPoints());

45

46 // deactivate vertex arrays after drawing
47 glDisableClientState(GL_VERTEX_ARRAY);

48 glDisableClientState(GL_COLOR_ARRAY);

49

50 // Redraw everything to show newly added points
51 glutPostRedisplay();

52

53 }

54

55 /**
56 * actual drawing function
57 **/
58 void display()

59 {

60 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

61

62 glLoadIdentity();

63

64 glTranslatef(0,0,-zoom);

65 glTranslatef(tx,ty,0);

66 glRotatef(rotx,1,0,0);

67 glRotatef(roty,0,1,0);

68

69 // draw grid
70 glColor3f(0.1,0.4,0.9);

71 glBegin(GL_LINES);

72 int i;

73 for(i=-10;i<=10;++i) {

74 glVertex3f(i*10,-0.5,-10*10);

75 glVertex3f(i*10,-0.5,10*10);

76

77 glVertex3f(10*10,-0.5,i*10);

78 glVertex3f(-10*10,-0.5,i*10);

79 }

80

81 // draw three axes for orientation
82 glColor3f(1,0,0);

83 glVertex3f(0,0,0);

84 glVertex3f(5,0,0);

85

86 glColor3f(0,1,0);

87 glVertex3f(0,0,0);

88 glVertex3f(0,0,-5);

89

90 glColor3f(0,0,1);

91 glVertex3f(0,0,0);

92 glVertex3f(0,5,0);

93

94 glEnd();

95 pointdraw();

96 glutSwapBuffers();

97 }

98

99 /**
100 * adjusts viewport to window i f window is changed
101 **/
102 void reshape(int w, int h)

198

F.1 ibeo3DVisioFileReader.cpp

103 {

104 // prevent divide by 0 error when minimized
105 i f(w==0)
106 h = 1;

107

108 glViewport(0,0,w,h);

109 glMatrixMode(GL_PROJECTION);

110 glLoadIdentity();

111 gluPerspective(45,(f loat)w/h,0.1,500);
112 glMatrixMode(GL_MODELVIEW);

113 glLoadIdentity();

114 }

115

116

117 /**
118 * calculate rotation and zoom from mouse movement
119 *

120 * @param int x Mouse movement on x−axis
121 * @param int y Mouse movement on y−axis
122 **/
123 void Motion(int x, int y)

124 {

125 int diffx=x-lastx;

126 int diffy=y-lasty;

127 lastx=x;

128 lasty=y;

129

130 i f(Buttons[0] && Buttons[2])

131 {

132 zoom += (f loat) 0.1f * diffy;

133 }

134 else i f(Buttons[2])

135 {

136 rotx += (f loat) 0.5f * diffy;

137 roty += (f loat) 0.5f * diffx;

138 }

139 else i f(Buttons[0])

140 {

141 tx += (f loat) 0.05f * diffx;

142 ty -= (f loat) 0.05f * diffy;

143 }

144 }

145

146 /**
147 * mouse event handler
148 *

149 * @param int b Button identif ier
150 * @param int s Button status
151 * @param int x Mouse movement on x−axis
152 * @param int y Mouse movement on y−axis
153 **/
154 void mouse(int b, int s, int x, int y)

155 {

156 lastx=x;

157 lasty=y;

158 switch(b)
159 {

160 case GLUT_LEFT_BUTTON:

161 Buttons[0] = ((GLUT_DOWN==s)?1:0);

162 break;
163 case GLUT_MIDDLE_BUTTON:

164 Buttons[1] = ((GLUT_DOWN==s)?1:0);

165 break;
166 case GLUT_RIGHT_BUTTON:

167 Buttons[2] = ((GLUT_DOWN==s)?1:0);

199

F OFF viewer

168 break;
169 default:
170 break;
171 }

172 }

173

174 /**
175 * main method −
176 * displays program information , handles commandline parameters and
177 * cal ls the glut functions for the 3D interface
178 *

179 * @param int argc Number of parameters (including the binaries name)
180 * @param char** argv Array holding al l space separated cmd−parameters
181 **/
182 int main (int argc, char** argv)

183 {

184 std::cout << "Simple OFF-Viewer version " << VERSION << ", Copyright (c) 2010-2011 Jan Gries and

Jan Girlich" << endl;

185

186 i f (argc != 2)

187 {

188 std::cout << "usage: " << argv[0] << " off-file" << endl << endl;

189 }

190 else
191 {

192 std::cout << "opening file " << argv[1] << endl;

193

194 scanpoints.readModel(argv[1]);

195

196 glutInit(&argc,argv);

197 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGBA|GLUT_DEPTH);

198 glutInitWindowSize(640,480);

199 glutInitWindowPosition(100,100);

200 glutCreateWindow("Ibeo-Scan Visualisierung");

201

202

203 glutDisplayFunc(display);

204 glutReshapeFunc(reshape);

205 glutMouseFunc(mouse);

206 glutMotionFunc(Motion);

207 glutIdleFunc(NULL);

208

209 glEnable(GL_DEPTH_TEST);

210

211 glutMainLoop();

212 }

213

214 return 0;

215 }

F.2 ScanPointArray.cpp

This file serves as backend for several programs written to handle vertices from 3D
LRFs. For the above interface only the constructor and the readmodel() method are
used.

1 #include <GL/gl.h>

2 #include <GL/glu.h>

3 #include <GL/glut.h>

200

F.2 ScanPointArray.cpp

4 #include <iostream>

5 #include <fstream>

6 #include <string>

7

8 using namespace std;

9

10 class ScanPointArray {

11

12 // global data structure for vertices and colors
13 const static size_t MAX_POINTS = 10000000;

14 size_t scanPointIterator;

15

16 GLfloat ScanPointCoord[MAX_POINTS*3];

17 GLfloat ScanPointColor[MAX_POINTS*3];

18

19 public:
20 ScanPointArray()

21 {

22 scanPointIterator = 0;

23

24 // in i t ia l i ze with negative values , because negative values are not painted
25 for (size_t i=0; i < MAX_POINTS*3; ++i)

26 {

27 ScanPointCoord[i] = 0;

28 ScanPointColor[i] = 0;

29 }

30 }

31

32 void ScanPointAddPoint(GLfloat Xcoord, GLfloat Ycoord, GLfloat Zcoord, GLfloat Greyvalue)

33 {

34 // at MAXPOINTS elements start overwriting from the beginning
35 i f (scanPointIterator >= MAX_POINTS*3)

36 {

37 scanPointIterator = 0;

38 }

39

40 // add coordinates of a vertex
41 ScanPointCoord[scanPointIterator]=Xcoord;

42 ScanPointCoord[scanPointIterator+1]=Ycoord;

43 ScanPointCoord[scanPointIterator+2]=Zcoord;

44

45 // set color
46 ScanPointColor[scanPointIterator]=Greyvalue;

47 ScanPointColor[scanPointIterator+1]=Greyvalue;

48 ScanPointColor[scanPointIterator+2]=Greyvalue;

49

50 scanPointIterator += 3;

51 }

52

53 /**
54 * reduce brightness of a l l vertices by delta
55 *

56 * @param GLfloat delta
57 **/
58 void ReduceAllBrightnessBy(GLfloat delta)

59 {

60

61 for (size_t i=0; i < MAX_POINTS; ++i)

62 {

63 // avoid colors to turn negative
64 i f (ScanPointColor[i] >= delta)

65 {

66 ScanPointColor[i] -= delta;

67 }

68 }

201

F OFF viewer

69 }

70

71 GLfloat *GetCoords()

72 {

73 return ScanPointCoord;

74 }

75

76 GLfloat *GetColors()

77 {

78 return ScanPointColor;

79 }

80

81 size_t getNumPoints()

82 {

83 return MAX_POINTS;

84 }

85

86 /**
87 * write out OFF f i l e to a f i l e called ’model. off ’
88 **/
89 void saveModel()

90 {

91 std::ofstream out("model.off");

92

93 // create OFF header
94 out << "OFF\n" << MAX_POINTS << " 0 0\n";

95

96 for (unsigned int i=0;i<MAX_POINTS*3;)

97 {

98 out << ScanPointCoord[i] << " " << ScanPointCoord[i+1] << " " << ScanPointCoord[i+2] << " " << "

\n";

99 i += 3;

100 }

101

102 out.close();

103 }

104

105 /**
106 * read OFF f i l e
107 *

108 * @param const char* the name of the OFF f i l e
109 **/
110 void readModel(const char* file)

111 {

112 std::ifstream in(file);

113 string line;

114

115 // remove OFF header
116 getline(in, line);

117 getline(in, line);

118

119 f loat X, Y, Z, R, G, B;

120 unsigned int i = 0;

121 while (! in.eof())

122 {

123 getline(in, line);

124 sscanf(line.c_str(), "%f %f %f %f %f %f", &X, &Y, &Z, &R, &G, &B);

125

126 ScanPointCoord[i]=X;

127 ScanPointCoord[i+1]=Z;

128 ScanPointCoord[i+2]=-Y;

129

130 ScanPointColor[i]=R;

131 ScanPointColor[i+1]=G;

132 ScanPointColor[i+2]=B;

202

F.2 ScanPointArray.cpp

133

134 i += 3;

135 i f (i >= MAX_POINTS*3)

136 std::cout << "Too many points to load! Maximum is " << MAX_POINTS << endl;

137 }

138 }

139 };

203

	Abstract
	Motivation
	3D Heavy Transport Route Finder (3D-HTRF)
	Challenges of 3D-HTRF
	Experimental comparison of position data sources
	Problem formulation
	Experimental setup
	Conduct of the experiment
	Experimental results
	Discussion

	Expanding 3D-HTRF to the field of robotics
	Mapping
	Simultaneous Localization and Mapping to improve map accuracy
	Iterative Closest Point (ICP)
	Extended Kalman Filter (EKF)
	FastSLAM

	Contribution of this thesis
	Reducing financial costs of the current system
	Creating maps of higher accuracy using the 3D-HTRF hardware
	Code quality vs. runtime

	Summary & Overview

	Hardware
	Car
	Laser Range Finder
	Position data sources
	Car sensors
	Xsens MTi-G
	Oxford Technical Solutions RT3040

	System costs
	Summary

	State of the Art
	The problem of Simultaneous Localization And Mapping
	History of SLAM
	Common sensors used with SLAM
	LIght Detection And Ranging (LIDAR)
	Camera
	Radar
	Sonar

	Iterative Closest Point
	Analytical approaches
	(Discrete) Kalman Filter
	Extended Kalman Filter
	Further Kalman Filter

	Numerical Approaches
	FastSLAM
	Related work
	Other SLAM related research topics
	Loop-Closing
	Relaxation
	Kidnapped Robot Problem
	Global and local localization

	Summary

	Theoretical background
	Laser Range Finder (LRF)
	Infrared light
	Time of flight
	Frequency phase-shift
	Echo pulse width

	Inertial Navigation System (INS)
	Inertial Measurement Unit (IMU)
	Global Positioning System (GPS)

	Quality of a map
	Calculation complexity
	Relaxation
	Landmarks
	FastSLAM
	Particle
	Predicted particle pose
	Observation
	Landmark associations
	Likelihood
	Extended Kalman filter
	Particle Filter

	Summary

	Implementation
	Coordinate Systems
	World Geodetic System 1984 (WGS84)

	Program layout
	AppBase configuration
	AppBase data types
	Object File Format (OFF)
	OFF file viewer

	Preprocessing
	Street border cutter
	Street surface marking detector
	Echo pulse width cutter
	Clustering
	Slicing

	FastSLAM
	Particle
	Predicted particle pose
	Likelihood table
	Associate Observations with Landmarks
	Kalman Filter for landmark update
	Pseudo random number generator

	Relaxation
	Summary

	Discussion
	Design decisions
	FastSLAM 1.0 vs. FastSLAM 2.0
	Slicing
	Edge and corner detection
	Landmark detection
	Likelihoods
	Resampling
	Modeling of errors and probabilities
	Coordinate Systems
	Data structures
	Data output

	Results
	Comparison of ICP to FastSLAM
	Replacing an INS
	Using the Xsens MTi-G instead of the Oxford Technical Solutions RT3040
	Improving maps built from Oxford Technical Solutions RT3040 data
	Conclusion

	Statistics
	Runtime
	Memory usage
	Updated Landmarks to Observations ratio

	Relaxation
	Summary

	Outlook & Conclusion
	Hardware Suggestions
	LRF mounting positions
	Accuracy of timing
	Accurate determination of model errors

	Improving FastSLAM
	Landmark detection
	Reducing calculation complexity and memory usage
	Probabilistic extensions
	Output
	Relaxation

	Conclusion

	Acknowledgment
	Eidesstattliche Erklärung Jan Girlich
	Eidesstattliche Erklärung Jan Gries
	Aufteilung der Gruppenarbeit
	Bibliography
	FastSLAM 1.0 pseudo code
	AppBase configuration
	Preprocessing workers
	Street border cutter
	Street surface marking detection
	Echo pulse width cutter
	Coordinate conversion
	Slicing

	FastSLAM
	SLAMWorker
	Landmark
	Extended Kalman Filter
	Particle
	Likelihood table

	Relaxation
	OFF viewer
	ibeo3DVisioFileReader.cpp
	ScanPointArray.cpp

